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In the Edgeworth-Bertrand price game, each player has a capacity output, faces the same
market demand, and calls out a price. The high-price caller gets some residual market
at her price. The low-price caller gets her capacity at her price or all of the market. We
re-work Beckmann’s closed form solution to his symmetric version of this game, mostly
in mixed strategies, and observe that expected price played by a player declines with
the size of her exogenously given capacity.
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1. Introduction

The Bertrand-Edgeworth duopoly price game has two players with fixed upper
bounds on costless production who each simultaneously call out a price, given a
market demand schedule. The low price caller gets either her capacity production
as her equilibrium output or all of market demand at that price. The high price
caller gets a specific residual quantity as her output at her high price, given positive
excess demand at the low price, or she gets zero. In a Nash equilibrium with mixed
strategies, expected profit to player i is the same and maximal for any price call in
her solution set of prices, “against” the mixed strategy price calls of player j, and
similarly for player j. Beckmann (1967), with Dieter Hochstadter, set out a closed
form solution for such a game, given a linear (slope −1) market demand schedule
(price intercept at 1) and each player with the same bound on her production, i.e.,
they solved for equilibrium distribution functions on price “calls” for each possible
admissable capacity possessed by the two players. They determined that for small
capacities, each player would call out the joint monopoly price as a pure strategy.
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For large capacities, each would mix her price calls according to an equilibrium dis-
tribution function. A close reading of the paper reveals it to be curiously incomplete
and in fact flawed in an interesting way.1 We observe that the average price
called out declines with the sum of the capacities of the players, where
this average price includes the pure strategy calls.2 Beckmann in contrast
inferred a jump up in average price, at the capacity margin separating the pure
strategy range of price calls from the mixed strategy range. Specifically, the char-
acterization, sketched in Beckmann’s Fig. 3, which we establish is correct, does
not follow from the formulas he derived. Here we repair the Beckmann analysis
and fill in the missing pieces and hopefully provide the last word on Beckmann’s
interesting example. We end up with (a) pure strategy equilibria (joint monopoly)
for small capacities (b) mixed strategy equilibria with market sharing for medium
capacities (capacities sum to less than 1

2 , and (c) mixed strategy equilibria with
possible market “pre-emption” for large capacities. In this last case, the high price
player ends up on occasion with no market or has been “pre-empted” by the low
price player. In the limit of each player with capacity very near 1, each player plays
her “pre-emption” price, almost surely.

As Beckmann noted and we observe, for small capacities, the players do not
randomize and end up splitting the market between them, each at her capacity, in
a joint-monopoly solution. Then for the largest capacity, they do almost no random-
ization (play their “capacity price” almost surely), and end up in a contestabiltiy
equilibrium, one player supplying the complete market at a zero price, at each play.
(It is in fact a one shot, simultaneous move game.) When the capacities are such
that the joint monopoly price is below 1

2 (the market demand has intercept, 1 and
slope −1) but near 1

2 , the players mix their price calls but the range of price calls is
between 1

2 and the lower support, marginally below 1
2 . It is near the joint-monopoly

solution. Larger capacities lead to increased competitive price under-cutting and the
average price called by a player moves down farther from 1

2 as capacity increases.
Price 1

2 remains the joint-monoply price for such cases. Hence larger capacities drive
the average price played by a player farther from the joint-monopoly price. In the
limit, the average price played is almost zero, played almost certainly and this is
the competitive solution or what we call the contestable market solution.

The joint-monopoly price works as a benchmark in the analysis of each pos-
sible value for capacity, c. “Large” capacity leads to an average price played by

1At the top of page 64, one has “Now p0 is determined by condition H(p0) = 1. Figure 3 shows
p0 as a function of c.” Figure 3 follows directly in the paper. The p0 sketched in Fig. 3 does not in
fact derive from the analysis immediately preceeding the figure. In fact there is no valid derivation
of the p0 schedule in Fig. 3 in the paper, though the p0 shedule in Fig. 3 is correct for the model.
We infer that this correct schedule was arrived at by an interpolation through three correct points.
One key point is the subject of Fig. 2 in Beckmann’s paper and the other two points, end points
of the schedule, were obtained by straightforward ecnomics reasoning.
2Maskin (1986) and Allen and Hellwig (1986) have investigated the nature of general equilib-
rium under Bertrand price competition. The motivation was to have price adjustment in general
equilibrium without an auctioneer.
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each player, distant from this benchmark price. “Larger” capacity induces more
competitive price under-cutting by each player, under-cutting relative to the joint-
monopoly price of 1

2 . As capacity is changed in steps from 0 to unity, the average
price called out falls below the joint monopoly price by zero (for 0 > c � 1

4 ) down
to 1

2 . Central to the behavior of price calls relative to the exogenously given capac-
ities is what we call “the sharing rule”, namely what quantity the ex post high
price player gets after the simultaneous price calls are made. Beckmann drew on
a rule set out by Shubik in the 1950’s (see Leviatan and Shubik (1972)). Roughly
speaking this rule implies that the high price caller gets low profits but not neces-
sarily zero profits, consistently. Leviatan and Shubik (1972) introduced a different
“sharing rule” and the resulting game solved much more easily and as well, with a
quite different “evolution” of average prices with capacity change. We suggest that
the original Shubik sharing rule which is at the center of Beckmann’s analysis is
somewhat more realistic and makes the Beckmann problem well worth revisiting.

2. The Model

Each player has capacity, c, with no costs of production. The market demand sched-
ule is Q = 1−P , where P is “market” price. For p the price of the high price seller
and q the price of the low price seller, we have demand, 1 − q at the low price. If
1− q exceeds player-q’s c, then fraction 1−q−c

1−q of player-p’s potential quantity, 1−p

is supplied by player-p at price p. That is,

SHARING RULE3: In the case of excess demand at lower price q, we observe
player-q’s quantity supplied to be c, and player-p’s quantity supplied to be

[
1−q−c
1−q

]
[1 − p], at price p.

If c � (1 − q), then player-p supplies nothing.4

It is easy to see that each player plays her price 1−2c with certainty for the cases
0.25 � c > 0, and supplies her quantity c. To check this, we see that undercutting
by one player with a price deviation (playing a slightly lower price, ab initio) yields
no increase in output and thus results in a lower revenue (profit). Consider now a
deviation upward to price, [1−2c+ε] by player-p from current price 1−2c for ε small

3This rule for allocating demand to the high price player is due to Shubik. See Leviatan and
Shubik (1972; p. 118). The Leviatan-Shubik (1972) analysis is based on the assumption that the
high price player’s quantity is the total residual demand at that high price. Cournot price calls
become a benchmark for their analysis. And Cournot price calls are the perfect equilibrium in the
Kreps-Scheinkmann (1983) two stage game.
4We can say that player-p is pre-empted, and left with zero market and zero profit. This pre-

emption does not occur for cases of small capacity (c up to 1
2
). And such pre-emption was not

dealt with correctly by Beckmann in his derivations for cases of large capacity. Beckmann ended
up then with two errors: for small capacities, he used the wrong upper support of his distribution
function and for large capacities, he mis-handled the pre-emption issue. Somewhat by chance,
for c = 1

2
, he proceeded correctly and he ended up with three correct points, from which he

interpolated to his correct Fig. 3, his (p0, c) schedule. (We infer that he arrived at his two end
points from purely economics arguments.)
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and positive. Her revenue changes from
[

c
2c

]
(2c)[1− 2c] to

[
c
2c

]
[2c− ε][1− 2c + ε],

given the sharing rule above. The new revenue minus the old is −ε+4cε−ε2 which
is negative for 0.25 � c � 0. Thus each player playing price equal to 1 − 2c is a
Nash equilibrium strategy for the cases 0.25 � c � 0.

We now pursue this idea of an equilibrium in pure strategies for a value of c

slightly in excess of 1
4 . Consider each player playing price equal to 1 − 2(0.25 + ε)

for current c = 0.25 + ε for ε small and positive. Profit for each player is[
c
2c

]
[2c][1 − 2c]. Now consider the case of player-p playing a slightly higher price,

namely 1 − 2[0.25 + ε] + ε. This price will be below 0.5. Player-p’s profit will now
be

[
c
2c

]
[2[0.25 + ε] − ε][1 − 2[0.25 + ε] + ε]. If one subtracts player-p’s “original”

profit (given player-p’s price at 1 − 2c) from this profit, one obtains 3ε2

2 which
is of course positive. Hence each player playing price 1 − 2c, c = 0.25 + ε, is
not a Nash equilibrium in pure strategies and this suggests searching for a Nash
equilibrium in mixed strategies for the case of c > 0.25. However, before taking
up mixed strategies, we address Beckmann’s limit-value error.

He inferred that for the case of say, c = 0.25 + ε, the range of prices played in
the mixed strategy solution should terminate at upper bound, 1− c. We reject this
and make the case for an upper limit of 1

2 , which we defend below with a formal
argument turning on the maximization of expected profit. But it is obviously
useful to obtain some intuition on this crucial point. To this end, let us return to
our example immediately above and consider player-p “deviating” from the original
position (each playing price 1 − 2c) with a new price above 1

2 . That is, instead of
having her price call at ε above the original price, let it be 3ε above the original.
When we carry out the calculation of profit to player-p in the new position, we get
1
2{−2[0.25 + ε] + 8ε[0.25 + ε] − 3ε − 9ε2}. When her profit in the original position
is subtracted from this, we get −ε − ε2, which is negative. This suggests, but does
not prove, that in a mixed strategy equilibrium for the case c = 0.25+ ε, the range
of prices played will be bounded above by 1

2 .
And a last intuition on this point of difference with Beckmann. We agree with

Beckmann that for c = 0.25, it is correct to infer that each player plays price
1 − 2c with certainty. (Below we obtain this result when we take c = 0.25 + ε

and move ε down to zero.) Hence the spike of probability mass at price 1 − 2c for
c = 0.25. Beckmann’s assumption of the upper limit of the density at 1 − c for
c = 0.25+ ε implies a jump in the upper support of the density for a small increase
in c. Such an outcome seems counter-intuitive to us and in fact can be “ruled out”
under the assumption that the upper support remains at 1

2 for both c = 0.25 and
c = 0.25+ε, for ε small and positive. The smooth shrinking of the density function,
as c → 1

4 from above, to a spike at price 1
2 is a central outcome of our investigation

of Beckmann’s specific formulation of the Edgeworth-Bertrand price game.
We turn now to consider mixed strategy equilibria.
The expected payoff of a pure strategy p by player-p against a mixed strategy

G(q) of player-q is

v(p, G) = v1(p) + v2(p) + v3(p),
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where

v1(p) = p

∫ min(p,1−c)

p0

min
(

c,

[
1 − q − c

1 − q

]
[1 − p]

)
dG(q), {p > q and p0 < 1 − c}

v2(p) = p min
(

c,
1 − p

2

)
dG(p), {p = q}

v3(p) = p min(c, 1 − p)
∫ p1

p

dG(q), {p < q} (1)

where dG(q) = g(q)dq, and g(q) is the density function, the same for each player.
g(p) is zero for p outside the range (p0, p1) and 1 � p1, p0 � 0. The first term of (1)
correspends to the case p > q and is zero if p0 � 1 − c; the second term v2(p)
corresponds to case p = q; the third term v3(p) corresponds to p < q.

Continuous equilibrium has (1) each player playing from the same set of
strategies (distribution functions, to be solved for, are the same), (2) ∀ p, v(p, G) =
v̄ = constant, (3) v̄ is maximal over admissable v(p, G) and (4) G(p) is a continuous
function.5

Before turning to solving for G(p), we set out three useful preliminary results.

Lemma 1. For 1
2 � c � 1

4 , and G(p) continuous on (p0, p1), the strategy, p = 1− c

dominates p > 1 − c.

Proof. Suppose that p � 1 − c and consider the three terms in (1) separately.

(1) For p > q, we have player-p’s expected profit v1(p) = p
∫ min(p,1−c)

0

(
c, 1−c−q

1−q (1−
p)

)
dG(q). In this case we have 1−q−c

1−q (1−p) =
(
1− c

1−q

)
(1−p) �

(
1− c

1−q

)
c � c

since 0 < c
1−q < 1. Hence p

∫ 1−c

p0
(1 − p)1−q−c

1−q dG(q) = p(1 − p) × const. Hence
this latter increases as p decreases to 1 − c from above.

(2) For p = q we have expected profit dG(p)min
(
c, 1=p

2

)
p = 0 since dG(p) = 0

for all p.
(3) Look at p < q. We have v3(p) = p min(c, 1− p)

∫ p1

p dG(q) = p(1− p)
∫ p1

p dG(q).
Since 1 − c � 1

2 for 1
2 � c � 1

4 , both
∫ p1

p
dG(q) and p(1 − p) increase when p

decreases down to 1− c, therefore for p � 1− c v3(p) is maximized at p = 1− c

Lemma 2. For 1 � c > 1
2 , and G(p) continuous on (p0, p1), the strategy p = 1

2

dominates those with p > 1
2 .

5For Beckmann’s problem, obtaining a maximum for expected profit can be reduced to, getting
the limits of the equilibrium distribution function correct. Beckmann intuited the upper support
of the distribution function for small capacities and got it wrong. He neglected to consider maxima
of expected profit. Invoking maximization removes the need to intuit.
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Proof. We again consider the three terms in (1).

(1) For p > q and p > 1
2 , player-p’s expected profit becomes v1(p) =

∫ 1−c

p0

1−c−q
1−q

dG(q) × p(1 − p) = p(1 − p) × const. This latter increases as p approaches 1
2

from above.
(2) For p = q, profit is zero because G(p) is continuous.
(3) For p < q, player-p’s expected profit becomes v1(p) = A1B1 for A1 = p(1 − p)

and B1 =
∫ p1

p
dG(q). We observe that both A1 and B1 increase as p approaches

1
2 from above.

Lemma 3. v̄ = p0c, given G(q) continuous, p ∈ (p0, p1); 1 � p0, p1 � 0,

∀c ∈ (
1
4 , 1

)
.

Proof. (a) 1
2 � c > 1

4 . From Lemma 1, p0, p1 � 1 − c, therefore c � 1 − p0.
By the above definition of equilibrium, v(p, G) = v̄ for any p. This implies that
v̄ = v(p0, G) = cp0 + 0.

(b) 1 > c > 1
2 . By Lemma 2, p0 � 1

2 . Consider 2 cases: p0 > 1 − c and p0 � 1 − c.

(i) If p0 > 1 − c, then we find v̄1 = v(p0, G) = p0 · (1 − p0).
(ii) If p0 � 1 − c, then v̄2 = v(p0, G) = cp0.

We have to determine which of (i), (ii) we should use at each value of c. Suppose
that for some c = c∗ case (i) is valid, i.e., p0 > 1− c∗ and v̄ = p0 · (1− p0). Then in
formula for profit 1 v1(p) ≡ 0. Then we can solve this case completely, getting 1 −
G(p) = p0·(1−p0)

p·(1−p) . This formula suggests that G(p) is not a probability distribution
function suitable for this problem, because ∀p ∈ [0, 1] G(p) < 1. (G(p) → 1 only at
p → ∞). This implies that only case (ii) is valid, i.e., for all c ∈ (1

4 , 1) p0 � 1 − c

and v̄ = cp0.

3. Characterization of G(p)

Our analysis for small c′s is then similar to Beckmann’s, except we “digress” , with
our argument concerning the maximization of expected profit, to establish that the
upper support of G(p) is 1

2 . We make use of our three lemmas.
(1) For 1

2 � c > 1
4 we have expected profit

cp0 = pc

∫ p1

p

dG(q) + p(1 − p)
∫ p

p0

1 − c − q

1 − q
dG(q). (2)

We denote H(p) = 1 − G(p). We differentiate by p, in (2), and obtain6

H ′(p) +
cH(p)

(1 − p)(2c + p − 1)
+

cp0(1 − 2p)
p2(1 − p)(2c + p − 1)

= 0. (3)

6Getting ahead of ourselves, one observes here that if, for p → 1
2

from below, H′(p) and H(p)
each approach zero, this key equation is satisfied. This value of p, turns out in our analysis below
to be the upper support of the distributions which define each player’s equilibrium strategy.
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(2) For 1 > c > 1
2 , v(p, G) is generally in two parts, corresponding to (a) p � 1−c

and (b) p < 1 − c.7 For case (b) we have

cp0 = p(1 − p)
∫ p

p0

1 − q − c

1 − q
dG(q) + cp

∫ p1

p

dG(q). 1 − c � p > p0

This coincides with expected profit in (2) and hence for this case Eq. (3) is valid.
Case (a) involves player-q sometimes leaving player-p with zero market and

profit. Expected profit for this case (a) is

cp0 = p(1 − p)
∫ 1−c

p0

1 − q − c

1 − q
dG(q) + (1 − p)p

∫ p1

p

dG(q), p1 > p > 1 − c

if p1 > 1 − c. Therefore we have

G(p) = 1 + A − cp0

(1 − p)p
(4)

for

A =
∫ 1−c

p0

1 − q − c

1 − q
dG(q)

= const. (5)

The G(p) for p ∈ (p0, 1 − c) relevant for expression A is derived below.

3.1. Profit maximizing solution for c = 1
2

Since G(p) is a probability distribution function, it must be continuous and non-
decreasing on (p0, p1). We solve (3) for c = 1

2 and H(p1) = 0 (i.e., G(p1) = 1). One
gets

G(p) = 1 − p0

3

[(
4 − 2

p
+

1
p2

)
−

(
4 − 2

p1
+

4
p2
1

) (
p1

1 − p1

1 − p

p

)1/2
]

. (6)

Putting G(p0) = 0, yields

1 =
p0

3

[(
4 − 2

p0
+

1
p2
0

)
−

(
4 − 2

p1
+

4
p2
1

) (
p1

1 − p1

1 − p0

p0

)1/2
]

. (7)

This defines curve p0(p1) which investigation reveals to be increasing. It follows
that G(p) is also increasing in (0, 1), given a pair (p0, p1). Expected profit cp0 is
a maximum for p0 a maximum and this occurs at p1 = 1

2 . Corresponding to this
value of p1 one obtains p0 = 0.172.8

7We established in Lemma 3 that p0 < 1 − c.
8This was obtained by Beckmann because his upper support, 1 − c occurs at 1

2
, which we have

verified is the correct numerical value, though 1−c is not the correct support for other values of c.
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3.2. Profit maximizing solution for 1
2

> c > 1
4

We solve Eq. (3) with G(p1) = 1 and impose the condition G(p0) = 0. The solution
for H(p) = 1 − G(p) is

H(p) = Φ(p)
cp0(1 − p)1/2

(2c − 1 + p)1/2
,

Φ(p) =
∫ p1

p

1 − 2q

q2(1 − q)3/2(2c + q − 1)1/2
dq.

(8)

We forego writing out the integral here. That G(p1) = 1, is used in obtaining (8).
The requirement that G(p0) = 1 yields the dependence in p0(p1). We illustrate this
in Fig. 1 for the case c = 0.35. It is straightforward to see that such a curve has
one maximum for each c ∈ (

1
4 , 1

2

)
. And this maximum always occurs at p1 = 1

2 . To
see this, we substitute p0 = p0(p1) into condition 1−H(p0) = 0, and differentiating
by p1, and setting the result to zero, we have cp0(1 − 2p1)(1 − p0(p1))1/2 = 0. The
only satisfactory solution is p1 = 1

2 and this result is independent of the value of c.

Then given p1 = 1
2 , we obtain p0 in 1 − H(p0) = 0. The corresponding solution

is profit maximizing for our chosen values of c, since p1 was chosen to make p0 a
maximum. We proceeded to calculate p0 for various values of c (as in Beckmann’s
Fig. 3), in Fig. 2. We have also inserted the mean price p̄ in Fig. 2. Each density

Fig. 1.
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Fig. 2.

function peaks at the lower support and declines smoothly to zero at upper support,
1
2 . The mean price call is then generally relatively close to the lower support. The
variance peaks for c ∼= 0.7. The ability of each player to under-cut with her price
relative to the joint monopoly price of 1

2 leads to average price calls relatively distant
from price 1

2 as c is set farther above 1
4 . Price competition is bad for potential joint

monopoly profits. The ability of each player to commit to price 1
2 would give them

a joint profit maximum.

3.3. Profit maximizing solution for 1 > c > 1
2

This case involves possible pre-emption as when the lower price caller wins all of
the prospective market, leaving the other player with no market and no profit. This
pre-emption occurs because, roughly speaking, price, 1

2 yields joint monopoly profit
and there are no costs of playing for a part of the market less than one’s current
capacity, c. Each player now has an incentive to play prices up to 1

2 even though
she knows she will be, in ideal conditions, getting a part of the market less than
her current c. Above, with small capacities, no player ever played a price above
1 − c. Here with large capacities, it is rational for each player to occasionally call
out a price at 1 − c or above (up to 1

2 ). Beckmann was aware of this difference
between small and large capacity cases, but did not work out the large capacity
case correctly. For this case of large capacities, the complete G(p) function for each
c involves two pieces, appropriately joined at price 1− c. Below we label these two
pieces, G1(p) and G2(p). We turn to some formal details for player-p’s call below
and above price, 1 − c.



December 13, 2005 10:40 WSPC/151-IGTR 00064

470 A. F. Cheviakov & J. M. Hartwick

Fig. 3.

Consider two cases.

(a) min(p1, 1 − c) � p > p0. When player-p makes a price call below 1 − c, her
expected profit is “the familiar”

cp0 = p(1 − p)
∫ p

p0

1 − q − c

1 − q
dG(q) + cp

∫ 1/2

p

dG(q), (9)

and the equation for G(p) coincides with (3) above.
(b) p1 > p � 1 − c, if p1 > 1 − c. Here, player-p’s current price call can be at or

above 1 − c, and her expected profit is9

cp0 = p(1 − p)
∫ 1−c

p0

1 − q − c

1 − q
dG(q) + (1 − p)p

∫ 1/2

p

dG(q),
1
2

� p � 1 − c.

(10)

Now G(p) = 1 + A− cp0
p(1−p) , where A is defined following (4, 5). Note that from

the proof of Lemma 3 we know p0 < 1 − c.
We now establish that p1, the upper support, is never less than 1−c. This means

that both cases (a), (b) take place at any c ∈ (
1
2 , 1

)
.

9We have seen this and the next equation above with 1
2

here replaced by p1 above in the limits. So

our primary task here is to establish proper values for p1 and p0. In particular that p1 is indeed 1
2
.
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First look at p1 < 1 − c. Then only case (a) above is relevant, and p is in the
range p0 < p < p1 < 1− c. Thus the complete solution for p ∈ (p0, p1) is defined by
(3) and is analogous to the case with 1

2 > c > 1
4 . Using the condition G(p0) = 0,

we obtain implicit dependence p0 = p0(p1). It can be analytically shown, through
involved computations, that on p1 ∈ (0, 1−c) p0(p1) is a strictly increasing function,
therefore maximum of p0(p1), which is maximum of profit, is not reached on the
interval p1 ∈ (0, 1− c). But if we continue the curve p0(p1) allowing p1 > 1− c and
making G(p) a piecewise function

G(p) =
{

G1(p), p1 � p � 1 − c

G2(p), 1 − c � p � p0,

}
, (11)

with the conditions G1(1 − c) = G2(1 − c), G2(p0) = 0, G1(p1) = 1, then it is
possible to show, in the way similar to case 1

2 > c > 1
4 , that maximal profit is

reached at p1 = 1
2 > 1 − c.

We summarize. For a “large” c, we always have p0 < 1− c, p1 = 1
2 > 1− c, and

G(p) is a continuous composition (11) of two density functions that are solutions
to different differential equations (9, 10). We also plotted the means of each density
function in Fig. 2. The mean values are relatively close to the values of p0 since
each density function is convex and peaks at its lower support. Each is asymptotic
to zero at the upper support of 1

2 . A central result of our analysis is that expected
price called out by a player is always declining in her capacity. Relatively abundant
quantity, ex ante, results in relatively low prices, ex post.

4. Concluding Remark

As we noted above, a characterization of the solution is that a larger capacity leads
to a lower price, either certain or expected. Each player would like to end up at
the joint monopoly position but for c > 1

4 , they cannot attain the joint monopoly
position because of the credible threat of price undercutting by the “partner”. The
larger is c the worse is the effect of competitive price undercutting by each player,
relative to the potential joint monopoly profit outcome with each player playing a
price of 1

2 . If they could communicate and reach a binding agreement, then each
would play price 1

2 for c > 1
4 . Hence strategic uncertainty is pro-competition in the

sense that the average price played by either player is always below 1
2 for c > 1

4 . The
larger is c the farther the credible threat of price undercutting takes the average
price played by a player from the monopoly price of 1

2 . With c = 1 (the competitive
case), only one player produces and the market price is almost surely zero, and so
this “competitive outcome” could be characterized as a contestability equilibrium.

We have not proved that for each player to play with the same distribution
function is the optimal strategy. It is difficult to see how an “asymmetric” game
would work here. We presume then that symmetry is optimal here. Beckmann
reflected on a game with the two players with “unequal capacities c1 and c2. The
integral equation is a straightforward generalization [of the above]. However, its
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solution may no longer be developed in closed form.” (p. 67) We believe that for the
case of distinct but very similar capacities that the solution will be very similar to
what we have worked out above, for the case of identical capacities. Small capacities
would involve pure strategies. There are two opposing forces at work with c1 not
equal to c2. The player with the larger capacity has more to gain from having the
joint monopoly price obtain and hence would appear less motivated to undercut in
price. On the other hand, having a relatively large capacity would encourage one
not to be price undercut since the high price “residual” quantity will in general be
small. The symmetric game may thus be a small step to a complete analysis.
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