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An algorithmic framework is presented to find an extended tree of nonlocally
related systems for a given system of differential equations �DEs�. Each system in
an extended tree is equivalent in the sense that the solution set for any system in a
tree can be found from the solution set for any other system in the tree. Useful
conservation laws play an essential role in the construction of an extended tree. A
useful conservation law yields potential variables and equivalent nonlocally related
potential systems and subsystems for any given system. Nonlocal symmetries for a
given system of DEs can arise from any system in its extended tree. We construct
extended trees for the systems of planar gas dynamics and nonlinear telegraph
equations, and in both cases obtain new nonlocal symmetries. More importantly,
due to the equivalence of solution sets, any coordinate-independent method of
analysis �qualitative, numerical, perturbation, etc.� can be applied to any system
within the tree, and may yield simpler computations and/or results that cannot be
obtained when the method is directly applied to the given system. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2142834�

. INTRODUCTION

The potential symmetry approach1–5 is an algorithmic procedure for seeking nonlocal sym-
etries of systems of differential equations �DEs�. To be directly applicable, this approach re-

uires the existence of a conservation law of a given system. Each conservation law allows the
ntroduction of one or more auxiliary potential variables which are nonlocally defined with respect
o the original dependent variables.6–8 The resulting �extended� potential system yields nonlocal
ymmetries of the given system of DEs if it admits local symmetry generators that do not project
nto local symmetry generators of the given system.

A symmetry of a system of DEs is any transformation of its solution manifold into itself �i.e.,
symmetry transforms any solution to another solution of the same system�. Hence, in general,

ymmetry transformations are defined topologically and are not restricted to point or contact �more
enerally local� transformations acting on the given system’s dependent and independent vari-
bles. However, to perform calculations, a nonlocal symmetry transformation should be a local
ransformation acting on the space of variables of an auxiliary system equivalent to the given
ystem. As has been shown in many examples, local symmetries obtained directly by Lie’s algo-
ithm do not include all calculable symmetries of a given system. However, the application of
ie’s algorithm to related auxiliary systems systematically yields a search for nonlocal symmetries
f the given system.

Further extensions arise. Starting from a potential system of DEs, one may continue to obtain
grander potential system resulting from any conservation law of the potential system. Further-
ore, starting from a potential system, one may obtain nonlocally related subsystems �in addition
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o the original given one� by “excluding” dependent variables from the potential system. For
xample, the �1+1�-dimensional system of planar gas dynamics equations E�x , t ,v , p ,��=0 in
ulerian coordinates with independent variables x=position, t=time, and dependent variables v
velocity, p=pressure, �=density, gives rise to potential systems G�x , t ,v , p ,� ,r�=0,
�x , t ,v , p ,� ,r ,w�=0, and Z�x , t ,v , p ,� ,r ,w ,z�=0 with auxiliary potential variables r ,w ,z and

o various subsystems with fewer dependent variables �Sec. III�. This allows one to introduce the
otion of a “tree of nonlocally related potential systems and subsystems” originating from a given
ystem of DEs. It is important to note that a given system, its related potential systems and
ubsystems contain all solutions of each other, i.e., any solution of a related potential system or
ubsystem yields a solution of the given system and, mutatis mutandi, any solution of the given
ystem yields a solution of any related potential system or subsystem. But the solution relationship
s nonlocal since it is never one-to-one.

In general, the admitted point symmetries of a given system, its related potential systems and
ubsystems can be very different �e.g., Ref. 9�. It can happen that a point symmetry of a given
ystem is a nonlocal symmetry of a related potential system and, conversely, a point symmetry of
related potential system is a nonlocal symmetry of the given system. Moreover, it can happen

hat a point symmetry of the given system which is a nonlocal symmetry of a related potential
ystem reappears as a point symmetry of a grander potential system.9,10 Within a tree of potential
ystems, a “grand” system may exist that incorporates all point symmetries of the related systems
ith fewer potential variables as point symmetries in the grand system. Moreover, the grand

ystem could admit point symmetries that are nonlocal symmetries of all related systems.9,10

The problem of finding trees of potential systems is particularly important when a given DE
ystem contains arbitrary �constitutive� functions where one is interested in the question of sym-
etry classification with respect to specific forms of such functions. For different forms of the

onstitutive functions, the sets of conservation laws and consequent trees of related potential
ystems and subsystems can be different. Here, isolating useful systems and subsystems is of great
mportance.

If a given system of DEs has one of its equations written as a conservation law, then the
onservation law equation is a natural way of leading to a related potential system and subsequent
ree. In general, for any system of DEs the algorithmic direct construction method11,12 yields its
onservation laws. In particular, this method obtains factors multiplying each DE in the system so
hat the resulting linear combination of equations leads to a conservation law whose conserved
ensities are found from an integral formula. A resulting potential system �and subsequent ex-
ended tree� is found by replacing one of the DEs in such a linear combination by the conservation
aw. The factor multiplying the replaced DE must have the property that the solution set will not
e modified when the conservation law replaces this DE. A useful conservation law for obtaining
potential system from any given system has at least one factor with this property.

The outline of this paper is as follows. In Sec. II, we present the general framework for the
lgorithmic construction of trees of potential systems and subsystems for a given system of DEs.
n Sec. III, as a first example we consider the �1+1�-dimensional system of planar gas dynamics
PGD� equations5,14 in detail within the potential system framework. Some nonlocal symmetries
or the PGD system were found by Akhatov et al.14 through a heuristic approach. Here, we use the
ystematic conservation law/potential symmetry framework to derive an extended tree of potential
ystems which includes the PGD systems in Euler and Lagrange coordinates. Our work clarifies
nd extends the work presented in Ref. 14. In particular, we obtain new nonlocal symmetries for
GD systems by a direct study of systems of the extended tree. In Sec. IV, as a second example
e consider the nonlinear telegraph �NLT� equation.9,13 Here, we show how to extend the results

n Ref. 9 by introducing further potential variables. Using conservation laws for particular forms
f the constitutive functions,13 we construct extended trees for each such form. Further remarks
re presented in Sec. V.

The analysis of systems of DEs through consideration of trees of potential systems and
ubsystems has evident practical value. First, it allows one to calculate systematically nonlocal

ymmetries using Lie’s algorithm, which in turn are useful for obtaining new exact solutions from
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nown ones, for constructing invariant and nonclassical solutions, for discovering and construct-
ng linearizations, etc. Second, and perhaps more importantly, any general method of analysis
qualitative, numerical, perturbation, conservation laws, etc.� that is being considered for a given
E system may be tried again on nonlocally related potential systems or subsystems, since all

uch related systems contain all solutions of the given system. In particular, since the systems are
elated in a nonlocal manner, new results may be obtained for any method of analysis that is not
oordinate dependent.

I. ALGORITHMIC CONSTRUCTION OF TREES OF POTENTIAL SYSTEMS
ND SUBSYSTEMS TO OBTAIN NONLOCAL SYMMETRIES

Consider a PDE system of m equations R�x , t ,u�= �R1�x , t ,u� , . . . ,Rm�x , t ,u��=0, with two
ndependent variables �x , t�, and n dependent variables u= �u1 , . . . ,un�.

Suppose that the first equation R1�x , t ,u�=0 of the system is written as a conservation law,

DtT�x,t,u� + DxX�x,t,u� = 0. �2.1�

Definition 2.1: The PDE system S�x , t ,u ,v�=0 given by

vx = T�x,t,u� ,

vt = − X�x,t,u� ,

R2�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0, �2.2�

s a potential system with a potential variable v=v�x , t� for R�x , t ,u�=0 related to the conservation
aw R1�x , t ,u�=0.

The potential system S�x , t ,u ,v�=0 given by �2.2� is equivalent to the given system
�x , t ,u�=0. In particular, if �u ,v�= �ũ�x , t� , ṽ�x , t�� solves �2.2�, then u= ũ�x , t� solves
�x , t ,u�=0. Conversely, for any solution u= ũ�x , t� of R�x , t ,u�=0, there exists a pair of func-

ions �u ,v�= �ũ�x , t� , ṽ�x , t�� that satisfies �2.2�, with ṽ�x , t� unique to within a constant.
Suppose the system S�x , t ,u ,v�=0 admits a Lie group of point transformations �point sym-

etry�,

x* = x + ��S�x,t,u,v� + O��2� ,

t* = t + ��S�x,t,u,v� + O��2� ,

u*i = ui + ��S
i �x,t,u,v� + O��2� ,

v* = v + ��S�x,t,u,v� + O��2� . �2.3�

X = �S�x,t,u,v�
�

�x
+ �S�x,t,u,v�

�

�t
+ �S

i �x,t,u,v�
�

�ui + �S�x,t,u,v�
�

�v
�2.4�

s the infinitesimal generator of the point symmetry �2.3�. �Throughout this paper, we assume
ummation over a repeated index�.

Definition 2.2: A point symmetry �2.3� is called a potential symmetry of the given system
�x , t ,u�=0 related to the potential system S�x , t ,u ,v�=0 if and only if ���S /�v�2+ ���S /�v�2

�i=1
n ���S

i /�v�2�0, i.e., the infinitesimals �S, �S, �S
i essentially depend on v. Any potential sym-

etry is a nonlocal symmetry of the given system R�x , t ,u�=0.4

Definition 2.3: An equivalent system S�x , t ,ui1 , . . . ,uip ,v�=0, p�n−1 that can be obtained by
xcluding one or more dependent variables uk of the potential system S�x , t ,u ,v�=0, is called a
ubsystem of the potential system S�x , t ,u ,v�=0.
Definition 2.4: A tree of potential systems and subsystems for a given PDE system

9 Dec 2005 to 137.82.36.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



R
P
s
s

d
b

S
S
t
S

h

w
S

a

s
p
t
a
e
a

A
e

w
t

a

v

123506-4 G. Bluman and A. F. Cheviakov J. Math. Phys. 46, 123506 �2005�

Downloaded 2
�x , t ,u�=0, with some equations of R�x , t ,u�=0 written directly as conservation laws, is a set of
DE systems composed of R�x , t ,u�=0, all resulting potential systems, and all possible sub-
ystems. We will refer to the number of dependent variables in a subsystem as the level of that
ubsystem.

Remark 2.1: If a potential system, as it is written, includes conservation laws with an essential
ependence on potential variables, a higher potential system can be obtained, as will be illustrated
y examples.

Definition 2.5: A subsystem S�x , t ,ui1 , . . . ,uip−1�=0, obtained from a system
�x , t ,uj1 , . . . ,ujp�=0 by excluding a dependent variable u	, is locally related to
�x , t ,uj1 , . . . ,ujp�=0 if u	 can be directly expressed from the equations of S�x , t ,uj1 , . . . ,ujp�=0 in

erms of x , t, the remaining dependent variables and their derivatives. Otherwise the subsystem
�x , t ,ui1 , . . . ,uip−1�=0 is nonlocally related to S�x , t ,uj1 , . . . ,ujp�=0.

For example, the system

S�x,t,u,v� = 0: �vx − u = 0,

vt − �L�u��x = 0,
�2.5�

as two subsystems,

S1�x,t,u� = 0: ut − �L�u��xx = 0 and S2�x,t,v� = 0: vt = �L�vx��x, �2.6�

here S1�x , t ,u�=0 is nonlocally related to S�x , t ,u ,v�=0, and S2�x , t ,v�=0 is locally related to
�x , t ,u ,v�=0. �Throughout this paper, subindices denote corresponding partial derivatives.�

Definition 2.6: A tree of nonlocally related potential systems and subsystems is obtained from
tree of potential systems and subsystems by removing all locally related subsystems.

Remark 2.2: It is important to emphasize that a given system R�x , t ,u�=0, its related potential
ystems and subsystems, contain all solutions of each other. This directly follows from the way
otentials are introduced in the potential systems and the way dependent variables are excluded in
he subsystems since the integrability conditions always hold. Therefore, one may successfully
pply a method of analysis �qualitative, numerical, perturbation, symmetry, conservation laws,
tc.� to a potential system or a nonlocally related subsystem, even if it fails to be of use when
pplied to the given system R�x , t ,u�=0.

. Example 1: A tree of potential systems and subsystems for the nonlinear diffusion
quation

For the nonlinear diffusion equation, the given PDE system is the conservation law

R�x,t,u� = 0: ut − �L�u��xx = 0, �2.7�

here the constitutive function L�u� is related to the diffusion function K�u�=L��u�. Consequently,
he related potential system is given by

S�x,t,u,v� = 0: �vx − u = 0,

vt − �L�u��x = 0,
�2.8�

nd the subsystem S�x , t ,v�=0 is given by the equation

S�x,t,v� = 0: vt = �L�vx��x. �2.9�

The second equation of �2.8� is a conservation law, and hence it gives rise to another potential

ariable w, and higher potential system T�x , t ,u ,v ,w�=0 �Remark 2.1� given by
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T�x,t,u,v,w� = 0: 	vx − u = 0,

wx − v = 0,

wt − L�u� = 0,

�2.10�

nd subsystems T1�x , t ,u ,w�=0, T2�x , t ,v ,w�=0, T2�x , t ,w�=0 given by

T1�x,t,u,w� = 0: �wxx − u = 0,

wt − L�u� = 0,

T2�x,t,v,w� = 0: �wx − v = 0,

wt − L�vx� = 0,
�2.11�

T2�x,t,w� = 0: wt − L�wxx� = 0.

Since the subsystems S�x , t ,v�=0, T1�x , t ,u ,w�=0, T2�x , t ,v ,w�=0, and T2�x , t ,w�=0 are
ocally related to the potential systems �2.8� and �2.10�, they are not of any interest.

This tree of potential systems and subsystems is illustrated in Fig. 1 with arrows showing the
rigins of elements of the tree, with dashed lines used to denote locally related subsystems. The
roup classification of this tree of potential systems and subsystems is given in Ref. 5 and
eferences therein. In particular, for certain forms of the constitutive function L�u� the level two
ystem S�x , t ,u ,v�=0 yields nonlocal symmetries of the level one system R�x , t ,u�=0, and vice
ersa. The point symmetries of the “grand” level three system T�x , t ,u ,v ,w�=0 include all point
ymmetries of the lower level systems. Moreover, the “grand” system T�x , t ,u ,v ,w�=0 includes a
onstitutive function L�u� that yields symmetries that are nonlocal for the level one and level two
ystems.

. Direct construction method for finding conservation laws

A direct method for finding conservation laws using factors was presented in Refs. 11 and 12.
his method follows from the fact that a function f�x ,U ,�U , . . . ,�pU� is a divergence expression

f and only if it is annihilated by the Euler differential operators,

Ek =
�

�Uk − Di
�

�Ui
k + DiDj

�

�Uij
k + ¯ + �− 1�pDi1

¯ Dip

�

�Ui1¯ip
k , �2.12�

IG. 1. The tree of potential systems and subsystems for the nonlinear diffusion equation �2.7� for an arbitrary constitutive
unction L�u�.
9 Dec 2005 to 137.82.36.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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ssociated with each dependent variable Uk in f�x ,U ,�U , . . . ,�pU�, k=1, . . . ,n. In �2.12�, Di is the
otal derivative operator for the independent variable xi and Ui1¯ip

k =�pUk /�xi1
¯�xip

.
For a given PDE system R�x , t ,u�=0, when additional conservation laws are found within its

ree of potential systems and subsystems, the tree can be extended. Here x1= t ,x2=x.
The procedure to find additional conservation laws is as follows:

�A� Take a linear combination of the functions Rk�x , t ,U� associated with the system
R�x , t ,u�=0, with unknown factors 
k�x , t ,U ,�U , . . . ,�lU� �for some fixed l�,

M = 
k�x,t,U,�U, . . . ,�lU�Rk�x,t,U� . �2.13�

It is essential to note that in �2.13�, U is an arbitrary function. �U=u�x , t� is a solution of
R�x , t ,u�=0.�

�B� A set of factors �
k�x , t ,U ,�U , . . . ,�lU�� yields a conservation law �2.1� of R�x , t ,u�
=0 if and only if it satisfies the linear system of determining equations,

E1M = 0,

. . . , �2.14�

EnM = 0,

holding for arbitrary values of x , t and the components of U ,�U ,�2U , . . . .
�C� For each set of factors �
k�x , t ,�U , . . . ,�lU�� satisfying �2.14�, there is an integral formula

to find the density T and the flux X of the corresponding conservation law �2.1�.11,12

Remark 2.3: The procedure outlined above can be applied to find conservation laws for any
otential system or subsystem in a tree.

. Construction of extended trees of nonlocally related potential systems
nd subsystems using additional conservation laws

Definition 2.7: If for some additional conservation law, a factor 
k does not vanish or vanishes
nly on solutions U=u�x , t� of the given system R�x , t ,u�=0, then the resulting conservation law
2.1� is a useful conservation law and can replace the kth equation Rk�x , t ,u�=0 of the system
�x , t ,u�=0.

Consequently, the resulting system

R̃�x,t,u� = 0: 	
R1�x,t,u� = 0,

. . . ,

Rk−1�x,t,u� = 0,

DtT�x,t,u� + DxX�x,t,u� = 0,

Rk+1�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0

�2.15�

as the same solution set as the original DE system R�x , t ,u�=0. In particular, the system �2.15�
xplicitly contains a conservation law that leads to a related higher potential system. In determin-
ng conservation laws by the direct construction method for the related higher level potential
ystem S�x , t ,u ,v�=0 arising from �2.15�, for completeness it is essential to consider the potential

ystem S�x , t ,u ,v�=0 together with the replaced equation Rk�x , t ,u�=0, i.e., the system
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S̃�x,t,u,v� = 0: 	
R1�x,t,u� = 0,

. . . ,

Rk−1�x,t,u� = 0

Rk�x,t,u� = 0,

vx − T�x,t,u� = 0,

vt + X�x,t,u� = 0,

Rk+1�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0.

�2.16�

If a conservation law is not useful, then one would be too restricted in considering subsystems
with the same solution sets as R�x , t ,u�=0� that result from elimination of one or more dependent
ariables.

By incorporating the direct method for finding conservation laws, we are now able to outline
he algorithm for constructing the extended tree of nonlocally related potential systems and sub-
ystems for a given DE system R�x , t ,u�=0. Since u= �u1 , . . . ,un�, the level �number of dependent
ariables� of the given system in the tree is n.

�1� Construction of potential systems: Suppose R�x , t ,u�=0 includes explicit conservation
laws as written. For each of these conservation laws �2.1�, introduce a potential and
construct a potential system of level n+1. For each of the potential systems of level n
+1, repeat this step to obtain all potential systems of level n+2, etc., until higher potential
systems include no more explicit conservation laws. Let T1 denote the resulting tree. �If
R�x , t ,u�=0 does not include explicit conservation laws as written, then T1= �R�x , t ,u�
=0�.�

�2� Construction of subsystems: For all systems of the tree T1, exclude where possible, one by
one, dependent variables, to generate all subsystems of the systems in the tree T1. Elimi-
nate subsystems that are locally related to it. This yields a possibly larger tree T2.

�3� Additional conservation laws: Tree extension: For each system in T2, find multipliers that
yield useful conservation laws via the direct construction method. Use these additional
useful conservation laws to obtain higher potential systems and corresponding sub-
systems. Eliminate locally related subsystems. Continue until no further useful conserva-
tion laws are found for any nonlocally related potential system or subsystem. This yields
an extended tree of nonlocally related potential systems and subsystems.

. Construction of nonlocal symmetries from an extended tree of potential systems
nd subsystems

The extended tree obtained by the above procedure can be used for different methods of
nalysis. In particular, it is useful in the search for nonlocal symmetries of the given DE system
�x , t ,u�=0. Since each potential system and subsystem within the tree is nonlocally related to the
iven system, as well as other potential systems and subsystems in the tree, it follows that point
ymmetries of potential systems and subsystems may yield nonlocal �potential� symmetries of the
iven system, and/or other systems in the extended tree. Now we outline the algorithm to con-
truct nonlocal symmetries.

�1� Construction of extended trees of potential systems and nonlocally related subsystems:
For a given DE system R�x , t ,u�=0, construct the extended tree of nonlocally related
potential systems and subsystems. �If the given system contains constitutive functions,
different extended trees may be obtained for particular forms of constitutive functions.�

�2� Point symmetry analysis: For each system in the extended tree, use Lie’s algorithm to
obtain its point symmetries.
�3� Isolation of nonlocal symmetries: From the set of point symmetries of each system in the
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E
e

r

i
c

a

T
e

123506-8 G. Bluman and A. F. Cheviakov J. Math. Phys. 46, 123506 �2005�

Downloaded 2
extended tree, isolate nonlocal symmetries of the given system R�x , t ,u�=0.

An example of the use of this algorithm follows.

. Example 2: Nonlocal symmetries and linearization of a nonlinear reaction-diffusion
quation

We apply the above-described algorithm of construction of nonlocal symmetries to the
eaction-diffusion equation

R�x,t,u� = 0: ut − u2uxx − 2bu2 = 0. �2.17�

First, we construct an extended tree of potential systems and subsystems. The equation �2.17�
s not written as a conservation law. We look for multipliers of the form 
1=
1�U� that yield
onservation laws of �2.17�. Here the determining equation �2.14� becomes

E1�
1�U��Ut − U2Uxx − 2bU2�� = 0,

nd has solution 
1�U�=−1/U2, with corresponding conservation law


1

u
�

t
+ �u + bx2�xx = 0. �2.18�

he multiplier 
1�U�=−1/U2 does not vanish. Hence the conservation law �2.18� is useful and
quivalent to the PDE �2.17�. We let u1=1/u and denote the resulting PDE by

R̃�x,t,u1� = 0: u1t + 
 1

u1
+ bx2�

xx
= 0. �2.19�

We introduce potential variables v and w and corresponding potential systems,

S�x,t,u1,v� = 0: 	vx − u1 = 0,

vt + 
 1

u1
+ bx2�

x
= 0,

�2.20�

T�x,t,u1,v,w� = 0: 	
vx − u1 = 0,

wx − v = 0,

wt + 
 1

u1
+ bx2� = 0.

The subsystems are

S�x,t,v� = 0: vt + 
 1

vx
+ bx2�

x
= 0,

T1�x,t,u,w� = 0: 	wxx − u1 = 0,

wt + 
 1

u1
+ bx2� = 0,

�2.21�

T2�x,t,v,w� = 0: 	wx − v = 0,

wt + 
 1
+ bx2� = 0,
vx
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T2�x,t,w� = 0: wt + 
 1

wxx
+ bx2� = 0.

The tree of potential systems and subsystems is illustrated in Fig. 2 with arrows showing the
rigins of elements of the tree. Locally related subsystems are outlined with dashed lines. For the
nalysis of nonlocal symmetries of the given system R�x , t ,u�=0 �2.17�, only systems
�x , t ,u1 ,v�=0 and T�x , t ,u1 ,v ,w�=0 need to be used, since all other subsystems are locally
elated to them.

One can show5 that the level three potential system T�x , t ,u1 ,v ,w�=0 admits an infinitesimal
enerator,

X�
T = eb�w−xv�
�F1 − bxF3�

�

�x
+ �2bxu1

2F1 − u1
2F2 + bu1�1 − bx2u1�F3�

�

�u1

+ �vF1 − �1 + bxv�F3�
�

�w
� , �2.22�

here

�F1�v,t�
�v

= F2�v,t�,
�F3�v,t�

�v
= F1�v,t�,

�F3�v,t�
�t

= F2�v,t� . �2.23�

The point symmetry generator �2.22� is infinite dimensional; it projects to a point symmetry of

2�x , t ,v ,w�=0, induces a contact symmetry of T2�x , t ,w�=0, a Lie-Bäcklund symmetry of

1�x , t ,u ,w�=0, and a nonlocal symmetry of R�x , t ,u�=0, R̃�x , t ,u1�=0, S�x , t ,u1 ,v�=0, and
�x , t ,v�=0. Consequently, T�x , t ,u1 ,v ,w�=0, T2�x , t ,v ,w�=0, and T2�x , t ,w�=0 are linearizable
y invertible mappings, and the other systems in the tree are linearizable by noninvertible
appings.4,5

II. TREES AND NONLOCAL SYMMETRIES FOR PLANAR GAS DYNAMICS EQUATIONS

We now use the algorithmic approach described in Sec. II to construct trees of potential
ystems and subsystems for the �1+1�-dimensional system of planar gas dynamics �PGD� equa-
ions. The point symmetries of some of these systems have been extensively considered in Ref. 14.

The two fundamental systems of differential equations that describe nonstationary
1+1�-dimensional gas motions are Euler and Lagrange systems. In the Eulerian description, x is

FIG. 2. The tree of potential systems and subsystems for the reaction-diffusion equation �2.17�.
Cartesian coordinate in a fixed coordinate frame. The Euler system is given by
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E�x,t,v,p,�� = 0: 	�t + ��v�x = 0,

��vt + vvx� + px = 0,

��pt + vpx� + B�p,1/��vx = 0.

�3.1�

ere v is the gas velocity, � is the gas density, and p is the gas pressure. In terms of the entropy
ensity S�p ,��, the constitutive function B�p ,1 /�� is given by

B�p,1/�� = − �2S�/Sp.

In many applications, however, it is more convenient to use Lagrange mass coordinates s
t , y=�x0

x ����d�. In these variables, the system �3.1� takes on the equivalent form

L�y,s,v,p,q� = 0: 	qs − vy = 0,

vs + py = 0,

ps + B�p,q�vy = 0,

�3.2�

nd is called the Lagrange system. Here the coordinate y essentially enumerates the fluid particles;
ts domain does not change with time. The partial time derivative � /�s=� /�t+v� /�x is the ma-
erial derivative. The use of Lagrange mass coordinates often significantly facilitates the formu-
ation of boundary conditions.15–17

We show that the potential system framework provides a direct connection between the Euler
ystem �3.1� and the Lagrange system �3.2�. Moreover, further extensions arise, and in particular,
ne can obtain other nonlocally related equivalent systems of equations.

We now construct a tree of nonlocally related potential systems and subsystems, with
�x , t ,v , p ,��=0 given by �3.1� serving as the given system, through the algorithm described in
ec. II.

Since the first equation of �3.1� is a conservation law, a potential variable r is naturally
ntroduced, and the resulting level four potential system has the form

G�x,t,v,p,�,r� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.3�

An obvious subsystem I�x , t ,v , p ,r�
G1�x , t ,v , p ,r�=0 is obtained by excluding the density
from �3.3�,

I�x,t,v,p,r� = 0: 	rt + vrx = 0,

rx�vt + vvx� + px = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.4�

n Ref. 14, �3.4� is referred to as the intermediate system. However, this system is locally related
o G�x , t ,v , p ,� ,r�=0.

Another subsystem is G2�x , t , p ,� ,r�=0, obtained by excluding the velocity v. This subsystem
s also not of interest since it is locally related to G�x , t ,v , p ,� ,r�=0.

Consider a local coordinate transformation of the system G�x , t ,v , p ,� ,r�=0 with r=y , t=s
reated as independent variables, and x ,v , p ,� as dependent variables. Without loss of generality,

�0. We let q=1/�, and obtain the system G0�y ,s ,x ,v , p ,��=0 given by

9 Dec 2005 to 137.82.36.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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G0�y,s,x,v,p,�� = 0: 	
q − xy = 0,

v − xs = 0,

vs + py = 0,

ps + B�p,q�vy = 0,

�3.5�

quivalent to the potential system G�x , t ,v , p ,� ,r�=0 and locally related to it.
A subsystem of G0�y ,s ,x ,v , p ,��=0 obtained by excluding x through xsy =xys is the Lagrange

ystem �3.2�, L�y ,s ,v , p ,q�
G0�y ,s ,v , p ,q�=0. Thus the Euler and Lagrange systems of PGD
quations are connected through a common potential system �see Fig. 3�.

We continue the construction of the tree of potential systems and subsystems for the PGD
quations for a general constitutive function B�p ,1 /��. We first find possible higher potential
ystems arising for the potential system G�x , t ,v , p ,� ,r�=0 given by �3.3�.

The Euler system given by �3.1� with multipliers 
1=V, 
2=1, 
3=0 yields a useful conser-
ation law,

��v�t + �p + �v2�x = 0, �3.6�

hich also holds for the system G�x , t ,v , p ,� ,r�=0. Hence we use the conservation law �3.6� to
eplace the equation rx�vt+vvx�+ px=0, and introduce a potential variable w to obtain the level five
otential system W�x , t ,v , p ,� ,r ,w�=0 given by

W�x,t,v,p,�,r,w� = 0: 	
rx − � = 0,

rt + �v = 0,

wx + rt = 0,

wt + p + vwx = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.7�

The third equation of �3.7� is written as a conservation law, and accordingly we introduce a

IG. 3. The tree TPGD of nonlocally related PGD potential systems and subsystems, for an arbitrary constitutive function
�p ,1 /��; E�x , t ,v , p ,��=0 is the Euler system �3.1�, L�y ,s ,v , p ,q�=0 is the Lagrange system �3.2�.
otential variable z to obtain a level six potential system,
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Z�x,t,v,p,�,r,w,z� = 0: 	
rx − � = 0,

rt + �v = 0,

zt − w = 0,

zx + r = 0,

wt + p + vwx = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.8�

The only nonlocally related subsystems of �3.7� and �3.8� arise from excluding r �see Fig. 3�.
he Lagrange system �3.2� has a nonlocally related subsystem obtained by excluding v,

L�y,s,p,q� = 0: �qss + pyy = 0,

ps + B�p,q�qs = 0.
�3.9�

The tree TPGD of useful �i.e., nonlocally related� potential systems and subsystems �for an
rbitrary constitutive function B�p ,1 /��� is illustrated by Fig. 3. Note that either the Euler system
�x , t ,v , p ,��=0 or the Lagrange system L�y ,s ,v , p ,q�=0 can be taken as the given system. Each
f these systems gives rise to the same tree of potential systems and subsystems.

All systems in the tree TPGD are nonlocally related and equivalent �i.e., contain all solutions of
ach other�. Therefore any general method of analysis �qualitative, numerical, perturbation, sym-
etry, conservation laws, etc.� may yield new results for any of these nonlocally related PGD

ystems. In particular, this is the case for the symmetry analysis given below.
In Ref. 14, point symmetries of three systems were studied in detail—the Euler system �3.1�,

he Lagrange system �3.2�, and the “intermediate” system �3.4�. The authors gave a classification
ith respect to the constitutive function B�p ,1 /�� and isolated the cases in which some of the
oint symmetries of E�x , t ,v , p ,��=0, L�y ,s ,v , p ,q�=0 or I�x , t ,v , p ,r�=0 were nonlocal for the
ther two systems. However, their approach was heuristic—the connections between their systems
id not involve a general constructive framework.

Using the algorithmic approach presented in this paper, one directly arrives at the tree TPGD of
onlocally related PGD potential systems and subsystems. To find nonlocal symmetries of systems
�x , t ,v , p ,��=0 and L�y ,s ,v , p ,q�=0, one should classify the point symmetries of all eight

ystems in the tree, with respect to the constitutive function B�p ,1 /��. �The system
�x , t ,v , p ,r�=0 discussed in Ref. 14 is of no interest since it is locally related to the system
�x , t ,v , p ,� ,r�=0 in the tree.� For example, the subsystem L�y ,s , p ,q�=0 given by �3.9�, in the

ase of a Chaplygin gas �B�p ,q�=−p /q�, admits a point symmetry with infinitesimal generator,

X = − y2 �

�y
− py

�

�p
+ 3yq

�

�q
, �3.10�

hich yields a nonlocal symmetry for both E�x , t ,v , p ,��=0 and L�y ,s ,v , p ,q�=0. The symmetry
3.10� was not obtained in Ref. 14, since the system �3.9� did not arise.

Furthermore, for some systems in the tree TPGD, particular forms of the constitutive function
�p ,1 /�� may yield useful conservation laws, which in turn would yield extended trees �cf. Sec.

I�. We now consider two examples.
Example A: For B�p ,1 /��=��1+ep�, the system G�x , t ,v , p ,� ,r�=0 has a family of useful

onservation laws,

Dt
 epf�r�
1 + ep� + Dx
vepf�r�

1 + ep � = 0, �3.11�
9 Dec 2005 to 137.82.36.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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or arbitrary f�r�. A conservation law of the form �3.11� can be used to replace the fourth equation
f G�x , t ,v , p ,� ,r�=0 to introduce a potential c and consequent family of potential systems

f�x , t ,v , p ,� ,r ,c�=0 in terms of an arbitrary function f�r�,

C f�x,t,v,p,�,r,c� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

cx + epf�r�/�1 + ep� = 0,

ct − vepf�r�/�1 + ep� = 0.

�3.12�

he corresponding tree extension is exhibited in Fig. 4�a�.
Example B: For the Chaplygin gas B�p ,1 /��=−p�, the family of useful conservation laws

Dt
 f�r�
p
� + Dx
vf�r�

p
� = 0 �3.13�

or arbitrary f�r� yields a family of potential systems

D f�x,t,v,p,�,r,d� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

dx + f�r�/p = 0,

dt − vf�r�/p = 0,

�3.14�

onlocally related to the other systems in the tree TPGD. The corresponding tree extension is
xhibited in Fig. 4�b�. One can show that nonlocal symmetries of the Euler system
�x , t ,v , p ,��=0 only arise in the cases where f�r�=r, f�r�=const. For f�r�=r, the system �3.14�
dmits

XD1 = 
−
t3

6
+ dt� �

�x
+ 
d −

t2

2
� �

�v
+ rt

�

�p
−

rt�

p

�

��
, �3.15�

XD2 = 
−
t2

2
+ d� �

�x
− t

�

�v
+ r

�

�p
−

r�

p

�

��
. �3.16�

Symmetry �3.15� is nonlocal for both the Euler system E�x , t ,v , p ,��=0 and the Lagrange
ystem L�y ,s ,v , p ,q�=0; symmetry �3.16� is nonlocal for the Euler system E�x , t ,v , p ,��=0 but
ocal for the Lagrange system L�y ,s ,v , p ,q�=0. In Ref. 14, symmetry XD1 was not obtained;
ymmetry XD2 was obtained by an ad hoc procedure.

Through the algorithmic framework given in this paper, the symmetry results in Ref. 14 can

IG. 4. PGD tree extensions for two particular forms of the constitutive function B�p ,1 /��. �a� B�p ,1 /��=��1+ep�. �b�
haplygin gas B�p ,1 /��=−p�.
e recovered systematically and substantially extended.
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V. EXTENDED TREES OF NONLOCALLY RELATED SYSTEMS FOR NONLINEAR
ELEGRAPH EQUATIONS

We now construct trees of nonlocally related potential systems and subsystems for the non-
inear telegraph �NLT� equation, as well as further tree extensions for particular forms of consti-
utive functions. This allows us to extend recent results that appeared in Refs. 9, 13, and 18.

. The tree for arbitrary constitutive functions

As a given system, we take the NLT equation,

U�x,t,u� = 0: utt − �F�u�ux�x − �G�u��x = 0. �4.1�

Equation �4.1� is an explicit conservation law and hence is equivalent to the level two poten-
ial system,

UV�x,t,u,v� = 0: �ut − vx = 0,

vt − F�u�ux − G�u� = 0.
�4.2�

NLT systems of the form �4.2� represent the equations of telegraphy of a two-conductor
ransmission line and equations of motion of a hyperelastic homogeneous rod whose cross-
ectional area varies exponentially along the rod. For further details, see Refs. 9 and 13 and
eferences therein.

Since the first equation of �4.2� is written as a conservation law, a level three potential system
s obtained,

UVW�x,t,u,v,w� = 0: 	wt − v = 0,

wx − u = 0,

vt − F�u�ux − G�u� = 0.

�4.3�

For arbitrary constitutive functions F�u� ,G�u�, there are no further potential systems.
The complete point symmetry classifications of the scalar equation �4.1� and system �4.2�

ppear, respectively, in Refs. 18 and 9. The point symmetries of �4.2� yield nonlocal symmetries
f �4.1� for a large class of constitutive functions.

The given equation �4.1� is the only subsystem of system �4.2�. The subsystems of potential
ystem �4.3� are obtained by excluding u and/or v, UW�x , t ,u ,w�=0, VW�x , t ,v ,w�=0, and

�x , t ,w�=0. However these subsystems are not interesting since they are locally related to the
otential system UVW�x , t ,u ,v ,w�=0 given by �4.3�.

The tree TNLT of useful �i.e., nonlocally related� potential systems and subsystems, for arbi-

FIG. 5. NLT tree for arbitrary constitutive functions F�u� ,G�u�.
rary constitutive functions F�u� ,G�u�, is exhibited in Fig. 5.
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. Tree extensions for particular constitutive functions

The complete conservation law classification of the potential system UV�x , t ,u ,v�=0 given by
4.2� was found in Ref. 13 for multipliers of the form 
i=
i�x , t ,U ,V� , i=1,2. The problem of
nding further potential systems from useful conservation laws of the system �4.2� was not
onsidered in Ref. 13.

Using the data presented in Ref. 13, one sees that the following useful conservation laws
Table I� arise for �4.2�.

In Table I, we exclude the cases �G�u�=u with F�u�=const, G�u�=0 with F�u� arbitrary� for
hich system �4.2� is linear or linearizable by a point transformation.

The eight conservation laws in Table I are now used to obtain additional potential systems and
onlocally related subsystems, and thus to extend the tree TNLT. In particular, each conservation
aw in Table I �except �I�� can be used to replace either equation of system UV�x , t ,u ,v�=0 given
y �4.2�, since in each of these seven cases both multipliers 
1 ,
2 are nonzero and have no
ependence on dependent variables.

Case 1: F�u�=G��u�. For conservation law �I� in Table I, one has 
1=0, and hence only the
econd equation of the system UV�x , t ,u ,v�=0 given by �4.2� can be replaced with this conser-
ation law. Accordingly, we introduce a potential variable ã and let a=e−xã. The corresponding
otential system is given by

UVA�x,t,u,v,a� = 0: 	vx − ut = 0,

a + ax − v = 0,

at − G�u� = 0.

�4.4�

Since the first equation of �4.4� is written as a conservation law, a level four potential system
s obtained,

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

a + ax − v = 0,

at − G�u� = 0.

�4.5�

ote that the system UVW�x , t ,u ,v ,w�=0 given by �4.3� is a subsystem of the system �4.5�

TABLE I. Conservation laws of the system �4.2� using the data presented in
Ref. 13.

Case Multipliers Conservation law

F�u�=G��u� 
1=0, 
2=ex �I� Dt�vex�−Dx�exG�u��=0

1=ex, 
2= tex �II� Dt�ex�u+ tv��−Dx�ex�tG�u�+v��=0

F�u�=G��u�+1 
1=
2=ex+t �III� Dt�ex+t�u+v��−Dx�ex+t�G�u�+u+v��=0

1=−
2=ex−t �IV� Dt�ex−t�u−v��+Dx�ex−t�G�u�+u−v��=0

F�u�=G��u�−1 
1=−i
2=ex+it �V,VI� Real and imaginary parts of
Dt�ex+it�iu+v��−Dx�ex+it�G�u�−u+ iv��=0

F�u� arbitrary,
G�u�=u


1=x− t2 /2, 
2= t �VII� Dt��x− t2 /2�u+ tv�
+Dx��t2 /2−x�v− t�F�u�du�=0


1=−t, 
2=1 �VIII� Dt�v− tu�+Dx�tv−�F�u�du�=0
hrough excluding the variable a. The subsystems
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VA�x,t,v,a� = 0: �a + ax − v = 0,

vx − H��at�att = 0 �H = G−1� ,

�4.6�
A�x,t,a� = 0: ax + axx − H��at�att = 0

re locally related to �4.4� and therefore not interesting.
The useful conservation law �II� is equivalent to a pair of equations bt= tG�u�+v, bx+b=u

tv, and hence yields the level three potential system,

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − G��u�ux − G�u� = 0,

bt − tG�u� − v = 0,

bx + b − u − tv = 0,

�4.7�

s well as the level four potential system,

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt − tG�u� − v = 0,

bx + b − u − tv = 0.

�4.8�

In Fig. 6 we exhibit the extended tree TNLT
1 of nonlocally related potential systems and

ubsystems of the NLT equation �4.1� in the case F�u�=G��u�.
In a similar manner, one can show that the three pairs of conservation laws for the other cases

F�u�=G��u�+1, F�u�=G��u�−1, F�u� arbitrary with G�u�=u� all yield extended trees of the form
xhibited in Fig. 6. For each of these three cases, the nonlocally related systems are as follows.

Case 2: F�u�=G��u�+1. The set of nonlocally related potential systems and subsystems is

IG. 6. The form of the extended tree of nonlocally related potential systems and subsystems of the NLT equations for
ase 1 �F�u�=G��u�, G�u� arbitrary�, Case 2 �F�u�=G��u�+1, G�u� arbitrary�, Case 3 �F�u�=G��u�−1, G�u� arbitrary�,
nd Case 4 �F�u� arbitrary with G�u�=u�.
iven by
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UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

at + a − �G�u� + u + v� = 0,

ax + a − �u + v� = 0,

�4.9�

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

at + a − �G�u� + u + v� = 0,

ax + a − �u + v� = 0,

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

bt − b − �G�u� + u − v� = 0,

bx + b + �u − v� = 0,

�4.10�

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt − b − �G�u� + u − v� = 0,

bx + b + �u − v� = 0.

Case 3: F�u�=G��u�−1. The useful complex conservation law �V,VI� in Table I is equivalent
o two useful real conservation laws,

�V� Dt�ex�v cos t − u sin t�� + Dx�ex�v sin t − �G�u� − u�cos t�� = 0,

�VI� Dt�ex�u cos t + v sin t�� − Dx�ex��G�u� − u�sin t + v cos t�� = 0.

he set of nonlocally related potential systems and subsystems is given by

UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

at + �v sin t − �G�u� − u�cos t� = 0,

ax + a − �v cos t − u sin t� = 0,

�4.11�

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

at + �v sin t − �G�u� − u�cos t� = 0,

ax + a − �v cos t − u sin t� = 0,

UVB�x,t,u,v,b2� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

bt + ��G�u� − u�sin t + vcos t� = 0,

bx + b + �u cos t + v sin t� = 0,

�4.12�
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UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt + ��G�u� − u�sin t + v cos t� = 0,

bx + b + �u cos t + v sin t� = 0.

Case 4: F�u� arbitrary, G�u�=u. In this case, the set of nonlocally related potential systems
nd subsystems is given by

UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − u = 0,

ax − ��x − t2/2�u + tv� = 0,

at + 
�t2/2 − x�v − t� F�u�du� = 0,

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

ax − ��x − t2/2�u + tv� = 0,

at + 
�t2/2 − x�v − t� F�u�du� = 0

�4.13�

nd

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − F�u�ux − u = 0,

bx − �v − tu� = 0,

bt + 
tv −� F�u�du� = 0,

�4.14�

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bx − �v − tu� = 0,

bt + 
tv −� F�u�du� = 0.

. FURTHER REMARKS

�1� The algorithmic framework for nonlocally related potential systems and subsystems has
een demonstrated to be useful for calculating new nonlocal symmetries and new nonlocal con-
ervation laws for a given system of PDEs. It should be important to study the applicability of
ther methods of analysis �qualitative, numerical, perturbation, etc.� to nonlocally related systems
n extended trees, especially coordinate-independent methods.

�2� In a PDE system with n�3 independent variables, a conservation law is equivalent to a set
f equations involving several potential variables.4 The corresponding potential system is under-
etermined, and requires suitable gauge constraints �in the form of additional equations on the
otential variables� to be imposed in order to find nonlocal symmetries.19

Although a potential system without constraints is underdetermined, its potential subsystems
ay be useful for analysis without gauge constraints.
�3� In the algorithm presented in Sec. II, the nonlocally related subsystems are obtained by
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xclusion of dependent variables as written. Alternatively any point transformation

U = U�x,t,u,v� ,

V = V�x,t,u,v� ,

X = X�x,t,u,v� ,

T = T�x,t,u,v� , �5.1�

ould be used to exclude a dependent variable U or V to obtain additional nonlocally related
ubsystems. Indeed this is the situation within the tree of potential systems and subsystems of the
GD equations �Sec. III�: the system G�x , t ,v , p ,� ,r�=0 as written has only a nonlocally related
ubsystem E�x , t ,v , p ,��=0. However after a local change of variables �to G0�y ,s ,x ,v , p ,��=0�,
t admits the Lagrange system L�y ,s ,v , p ,q�=0 as a nonlocally related subsystem �Fig. 3�.

�4� Using the algorithmic framework given in this paper, local and nonlocal symmetries for
he PGD equations obtained in Ref. 14 can be recovered systematically and substantially extended
some examples of new nonlocal symmetries are given in Sec. III�. The systematic classification of
seful conservation laws and consequent nonlocal extensions of the PGD tree TPGD will appear in
uture works, as well as concomitant nonlocal symmetry analyses.

�5� An exhaustive study of nonlocal symmetries and nonlocal conservation laws of NLT
quations resulting from extended trees of potential systems and subsystems is in progress. Pre-
iminary results show that for a large class of constitutive functions, namely, F�u�=G��u�, there
xist point symmetries of the potential system UVW�x , t ,u ,v ,w�=0 given by �4.3� that are non-
ocal for both the scalar NLT equation �4.1� and the system UV�x , t ,u ,v�=0 given by �4.2�. A
articular example is a symmetry

XUVW = v
�

�x
+ 
u +

w

3
� �

�t
−

uv
3

�

�u
−

v2

3

�

�v
+ uv

�

�w
�5.2�

or the case F�u�=u2 ,G�u�=u3 /3.
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