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Abstract

In this Letter we establish the correspondence between Bogoyavlenskij symmetries [Phys. Lett. A. 291 (4-5) (2001) 256,
Phys. Rev. E. 66 (5) (2002) 056410] of the MHD equilibrium equations and Lie point transformations of these equations. We
show that certain non-trivial Lie point transformations (that are obtained by direct application of Lie method) are equivalent to
Bogoyavlenskij symmetries.
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1. Introduction

Already for several decades the system of classical magnetohydrodynamics (MHD) equilibrium equations has
been of great interest and importance for physicists working in different areas. Its direct applications include
the problem of controlled thermonuclear fusion, astrophysical applications (star formation, solar activity) and
terrestrial applications (laboratory and industrial plasmas, ball lightning models).

In the recent papers [1,2] Bogoyavlenskij introduced new symmetry transforms of the ideal MHD equilibrium
equations. In certain classes of plasma configurations, Bogoyavlenskij symmetries break geometrical symmetry,
thus giving rise to important classes of non-symmetric MHD equilibrium solutions.

In this Letter we study the possibility of finding complex intrinsic symmetries of systems of partial differential
equations such as Bogoyavlenskij symmetries by applying a general method.

The goal of the Letter is to prove that the Bogoyavlenskij symmetries are contained in particular Lie groups of
point transformations, which are found independently using the classical Lie approach.

The Bogoyavlenskij symmetries form an infinite-dimensional Abelian group of transformations with eight
connected components in the case of incompressible plasmas, and four connected components in the case o
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compressible gas plasmas [2]. In Section 4 of the current Letter, we prove that the system of MHD equilibrium
equations in compressible and incompressible cases possesses specific infinite-dimensional Lie groups of point
transformations, which are equivalent to Bogoyavlenskij symmetries.

The Lie symmetry method [3] used in this Letter is generally capable of detecting both simple geometric
symmetries of systems of PDEs (e.g., rotations, scaling transforms and translations), and more complicated ones.
When the Lie transformations are found, they can be used to build particular solutions of the system under
consideration, to reduce the order and to obtain invariants. Self-similar solutions constructed from Lie symmetries
often have transparent physical meaning. Many appropriate examples can be found in [4].

We remark, however, that not all symmetries of a given system can be found by the Lie method, but only
continuous symmetries that have one-parametric Lie group structure.

Continuous Lie symmetries can also be used to obtain discrete symmetries of differential equations. One of the
simplest ways of finding discrete symmetries is the complexification of the parameter (an example is Lemma 1
in Appendix C). A recently developed more powerful algorithm [5—7] enables the user to abtdiscrete point
symmetries of systems of ordinary and partial differential equations. The algorithm proceeds by classifying the
adjoint actions of discrete point symmetries on the Lie algebra of Lie point symmetry generators. This method is
easy to apply and for simple systems does not require any computer algebra.

The advantage of the Lie group analysis procedure is that it can be applied directly to any system of equations
(provided that all involved functions are sufficiently smooth).

On the other hand, the application of the Lie symmetry method is almost always extremely resource-
demanding—it requires a lot of algebraic manipulation and the solution of large systems of dependent linear partial
differential equations. This makes the analysis of systems of several PDEs in several variables “by hand” practically
impossible. Due to this difficulty many important results obtained by the Lie method were discovered earlier using
much less general techniques.

However, the use of modern analytical computation software often significantly facilitates the computations.
Recently developed methods using Grdbner bases [8-11] and characteristic sets [12,13] to handle large
overdetermined systems of partial differential equations, such as those arising from the Lie group analysis
procedure, make it possible to perform complete or partial group analysis of many complicated systems.

A review of analytical computation software employing these ideas is given in [14].

In this Letter, the most involved algebraic manipulations were done aruUd usingRi f package for PDE
systems reduction. This package is an extended version of well-known Standard Form package developed by Reid
and Wittkopf [15].

Another widely used software package forRLE is di f f gr ob2 developed by Mansfield [16].

2. MHD equilibrium equations and their symmetries

The classical description of equilibrium states of moving plasmas is given by the system of MHD equilibrium
equations, which under the assumptions of infinite conductivity and negligible viscosity has the form [17]

1 v?

pV x curlV — —B x curlB — gradP — ,ograd7 =0, (1)
"

divpV =0, curl(V x B) =0, divB=0. (2)

HereV is plasma velocityB is the vector of the magnetic field inductign;plasma density?, plasma pressure;
andu, magnetic permeability coefficient.
We adopt the notation

B = (B1, B2, B3), V = (V, V2, V3).
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In the case of incompressible plasma, the equation
divV =0 3)

is added to the above system; for a compressible case an appropriate equation of state must be chosen. For exampls
it can be the adiabatic ideal gas equation of state:

P=p" exp<£), V - grads =0. (4)
C

Herec, is the heat capacity at constant volumprethe adiabatic exponent; aisgd entropy.

Recently Bogoyavlenskij [1,2] found that the ideal MHD equilibrium equations (1)—(3) possess the following
symmetries.

Let{V(r), B(r), P(r), p(r)} be a solution of (1)—(3), where the densityr) is constant on both magnetic field
lines and streamlines. Thék 1(r), B1(r), P1(r), p1(r)} is also a solution, where
. 2_Rp2
O g 2Oy 20, P1=CP+%M81.

Bi=bOB+cOVupY.  Vi= o omBt oo
(5)

Here
b2(r) — ¢?(r) = C = const

anda(r), b(r), c(r) are functions constant on both magnetic field lines and streamlines (i.e., on magnetic surfaces
¥ = const, when they exist).
These transformations form an infinite-dimensional Abelian group [2]

CGn=Am®An® R ®Z2® Z2® Z>, (6)
whereR™ is a multiplicative group of positive numbers, ang, is an additive Abelian group of smooth functions
in RS that are constant on magnetic surfaces. The g@yhas eight connected components.
Another transformation, which is applicable to compressible MHD equilibria (1), (2), is given by the following
formulas [1,2]:

b
=—V,
a(r)

wherea(r) is an arbitrary smooth function that is constant on both magnetic field lines and streamlinks4 &nd
is a constant.
For the case of ideal gas with the equation of state (4), this transformation changes the entropy as follows:

plzaz(r)p, B1 =058, Vi P =b?P, (7

S1=S8+2c,(In|b] — y In|a(r)]). (8)
The symmetries (7), (8) form the subgroup
Gom=An®RT®Z2® Z>, 9)

which has four connected components.

3. Liegroup formalism for the MHD equilibrium equations

A solution to a system dffirst-order partial differential equations
E(x,u,u=0, E= (EY .. E"), x=(x1 ..., x") eX, u=(ut,...,u") €U,

(814-7
U= -
1 dax!

i:l,...,n;j:l,...,m)EUl (10)
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represents a manifold2 in (m + n)-dimensional space&X x U, which corresponds to a manifol@?! in
(m + n + mn)-dimensional prolonged (jet) spaéex U x U of dependent and independent variables together
with partial derivatives [3].

Studying ideal MHD equilibria, one should take into account the generally the plasma domain is spanned by
nested 2-dimensionatagnetic surfaces-surfaces on which magnetic field lines and plasma streamlines lie [18].

In the case of adiabatic compressible MHD equilibrium equations, one ka8 independent and: = 10
dependent variables:

X=(x,y,2), u=(V1, Vo, V3, B1, B2, B3, W, P, p, S). (11)

HereV is a function constant on magnetic field lines and plasma streamlines, i.e., on magnetic surfaces, when they
exist:

grad¥(r))-B=0, grad¥ (r)) -V =0. (12)

The Lie method of seeking one-parametric groups of transformations that map solutions of (10) into solutions
consists in finding the Lie algebra of vector fields tangent to the solution mau#bld the jet space. These vector
fields serve as infinitesimal generators for a Lie symmetry group with representation

= fixua), i=1...,n, W)Y =g/ xua, j=1...,m, (13)
and have the form
. 9 b 0
V= L(X, U) — kx, u)—- kox, u, u)—-. 14
lZﬂ >axl+;n( >auk+;s,( 1)au{.< (14)
Components of these tangent vector fields are expressed through the group representation as follows:
, afi(x,u, ; g’ (x, u,
gz L XUDL L g2 XA (15)
da a=0 da a=0

The variablegi" in (14) are the coordinates of the prolonged tangent vector field corresponding to the derivatives
k-

Mi.

n m
. , : 0 P9
k _
§0cu W=D/ =) D', Di=gm4) uies (16)
k=1 j=1
We remark that relation (16) defines an isomorphism between tangent vector fields (14) and infinitesimal
operators

0
axi

. a
X=3 w4 oo (17)
i k

The explicit reconstruction of the transformations (13) from a generator (14) is done by solving the initial value
problem

9ft , . ; ad k
$=s’<f,g), Fo=x, 29D _kig, ¢o=u- (18)
a da

To find all Lie group generators admissible by the original system (10), one needs to solve the determining
equations

VE(X, u, lf)|E(x,u,Lll)=0 =0. (19)
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All [ determining equations (19) are linear partial differential equations with respeet iounknown functions
(15) of m + n variables (11).

According to the formula (19), the determining equations are obtained as follows. First, one applies the operator
v to the original equations (10). Second, using the original equations as true equalities, one eliminates from this
intermediate result some terms (usually the highest-order partial derivatives).

To solve the determining equations and obtain the tangent vector field coordinates (15), one should use the fact
that the latter do not depend on derivati\zés Therefore in alll determining equations coefficients at different
derivatives must equal zero. Thus the system (16) splits Mtg [(mn + 1) simpler linear partial differential
equations. In the case of adiabatic compressible plasma equilibria, for example, this generally leads to a system of
188 linear PDEs on 13 unknown functions.

It is not realistic to solve such a system “by hand”; however, computer algebra algorithms mentioned above can
sometimes be successfully applied to reduce the system of equations and to exclude dependence of tangent vecto
field coordinateg’, n* on some variables. It is shown in the proof of Theorem 1 how such a simplification can
significantly reduce the system of determining equations to the point when it can be processed manually.

4. Correspondence between Bogoyavlenskij symmetriesand Lie transformations of the MHD equilibrium
equations

In this section we answer the question about the possibility of obtaining the Bogoyavlenskij symmetries (5) and
(7), (8) of the MHD equilibrium equations using the Lie group formalism. This question was raised soon after the
discovery of the symmetries.

Theorem 1 shows that the application of the Lie group formalism to MHD equilibria (1), (2) yields certain Lie
point transformations, some of which andinite-dimensional

Theorem 2 proves that these Lie point transformations are equivalent to the gthupend Go, of
Bogoyavlenskij symmetries (for incompressible and compressible plasmas, respectively).

Theorem 1. (i) Consider the incompressible MHD equilibrium systentgs. (1)—(3) where the density(r) is
constant on both magnetic field lines and streamlines. This system admits the infinitesimal operators

3
x® = M(r)(

k= 1

Z k———( )%) (20)

d
X(Z)—ZVk +ZBk—+2P 5 (21)

d d
X<3>—N<r>( p——Z kavk> )

9
) G — 23
P (23)

These operators form a basis of the Lie algebra of infinitesimal operators in the class of Lie point transformations
{X'=x, U =g(u,a)}. Here M (r), N(r) are arbitrary smooth functions constant on both magnetic field lines and
streamlines.
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(i) Compressible ideal MHD equilibrium equatiofE), (2) with ideal gas state equatiof#), for arbitrary
density, admit the infinitesimal operators

9 9
<5>—ka +ZBk—+2P8—P+2cv o’ (24)
9 9 9
X®O=nm)|20— =Y Vie— -2,y — 25
()( 3 ]; v CWas) (25)

whereN (r) is an arbitrary smooth function constant on both magnetic field lines and streamlines.

The proof of Theorem 1 is given in Appendix A. It directly follows the Lie group analysis procedure. In
the alternative proof of the theorem, operators (20)-(22), (24), (25) are obtained by direct differentiation of
Bogoyavlenskij symmetries (5), (7)—(8) with respect to a properly chosen parameter, as shown in Appendix B. This
alternative proof is simpler, but it is based on the knowledge of the precise form of Bogoyavlenskij symmetries,
while the original proof does not require it.

Remark. Let us explicitly write down the transformations contained in the infinitesimal operators (20)—(25).
According to the reconstruction procedure (18), for the operator (20), we have

P1L=p, X1 =X,

and need to solve the linear initial value problem

Vv M B P: M
E_B ﬂ, uzle(r), E__ﬂ(vl B1),
at uo at aT 1%
Vi(z =0)=V, B1(r =0) =B, Pi(z =0 =P. (26)

The solution is

M M M B M
Blzcosl-< (r)t>B+sinh(ﬁ)4/upv, V1=sinh( (r)t>—+cos (r)r)v’
o Ny N
B2-B2
21
The infinitesimal operator (20) thus contains the possibility of “mixing” the components of the vectorHields
andV of the original solution into a new solution.

The same way by solving a corresponding initial value problem (18) we find that transformations contained in
the operator (21) are scalings

Pp=P+ , P1L=p. (27)

p1L=p, B1 =exp(r)B, Vi=expr)V, P1 =exp2t) P, (28)
the operator (22) corresponds to infinite-dimensional scalings
p1==exp(2N(r)t)p, B1 =B, Vi=exp—N()1)V, P1=P, (29)
the operator (23)—to translations
pL=p, B; =B, Vi=V, Pi=P+r. (30)
The transformations provided by the operators (24) and (25) are, respectively,

p1=p, B1 =exp(t)B, Vi =expr)V, Py =exp2t)P, S1=S+2¢,t (31)
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and
,01=exp(2N(r)r),o, B1 =B, V1=exp(N(r)r)V, Pi=P, S1=8—-2c,yN(r)t. (32)

Theorem 2. (i) Lie point transformations(27)—(29) are equivalent to the groups,, of Bogoyavlenskij
transformationg5), (6).
(ii) Lie point transformationg31), (32) are equivalent to the groufro, of Bogoyavlenskij transformations

(71)—(9)

The proof of Theorem 2 is presented in Appendix C.

5. Summary

It is remarkable that the infinite-dimensional groups of Bogoyavlenskij symmetries (5), (7), (8) of the MHD
equilibrium equations (1), (2), the richest known class of transformations for these equations, is implied by the Lie
point transformations of these equations.

Bogoyavlenskij symmetries form infinite-dimensional Abelian grotps=A,, ® A, ®RT O Zo ® Zo® Z2
in the incompressible case aith, = A,, ® RT™ & Z2 ® Z in the compressible cas€,, has eight connected
components, andio, has four. In this Letter we have shown that the groGpsand Go,, are equivalent to Lie
point transformations generated by infinitesimal operators (20)—(22) and (24), (25), respectively.

Thus Bogoyavlenskij symmetries are obtained from the standard procedure of Lie group analysis that is
applicable to any system of PDEs with sufficiently smooth coefficients.

The Lie point transformations that correspond to Bogoyavlenskij symmetries were found by direct application
of the Lie procedure to the MHD equilibrium equations (1), (2) in incompressible (3) and compressible (4) cases.

The Lie procedure in application to MHD equilibria is described in Section 3. Every solution to a system of
PDESs withn variables ana: unknown functions represents a maniféid in (m + n + mn)-dimensional jet space
X x U x Uj of independent and dependent variables (11) and partial derivativesf (10). The Lie procedure
consists in finding vector fields (14) tangent ta2'. These vector fields serve as infinitesimal transformation
group generators. Their componeétsy/ (15) are functions of all independent and dependent variables. Eq. (19)
for determining the tangent vector field components is the condition of invariance of the solution mantfold
under the action of.

It is known that generally the ideal plasma domain is spanned by nested 2-dimensional magnetic surfaces—
surfaces tangent to plasma velocity and magnetic field [18]. In the group analysis procedure, this fact was taken
into account by explicitly introducing a functio# (r) (12) constant on every magnetic surface (or on magnetic
field lines and plasma streamlines, if the surfaces seize to exist.) Introducing this function enables one to find Lie
symmetries depending on functions constant magnetic surfaces.

The determining equations (19) are linear first-order partial differential equations. They are solved by employing
the fact that the tangent vector field components do not depend on partial derivatives. Thus for the case of
incompressible MHD equilibrium the determining system splits into 150 equations on 11 unknown functions,
in the compressible case—into 188 equations on 13 unknown functions. Handling these systems, even with the
help of computer symbolic manipulation software described in the introduction, puts extremely high demands
on computer resources. Therefore we restricted our study to a subgroup of Lie point transformations of the type
{xX' =x, U =g(u,a)}. These transformations preserve spatial variables and do not depend on them. In this case
we got 141 determining equations for the incompressible case, and 187—for the compressible case. These system:
are substantially simpler than those arising from the general Lie procedure. UgirgeMvith Ri f package,
the systems were reduced, respectively, to 21 and 10 equations (in the compressible case, additional simplifying
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assumptions had to be used). Solving them, we obtained the transformation generators (20)—(23) for incompressible
MHD equilibria, and (24), (25) for compressible MHD equilibria.

The operators (20)—(23) admissible by incompressible MHD equilibria form a basis of the Lie algebra of
infinitesimal operators corresponding to the subgr@tip= x, U = g(u, a)} of the group (13) of all Lie point
transformations of these equations.

Theorem 2 stated above shows that the transformations generated by operators (20)-(22), (24), (25) are
equivalent to Bogoyavlenskij symmetri€s,, Gop, .

This result illustrates that the general Lie approach of analyzing systems of partial differential equations is
capable of revealing highly non-trivial intrinsic transformations, that may have great importance in applications, as
is the case for Bogoyavlenskij symmetries.

The complete Lie group analysis of compressible and incompressible MHD equilibrium equations, taking into
account the specific topology (general existence of magnetic surfaces), together with determination of discrete
point symmetries using their adjoint action on the Lie algebra of symmetry generators (see the introduction), will
be addressed in a subsequent paper.
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Appendix A. Proof of Theorem 1

(i) First, we prove that the operatok$?—Xx ) are admissible for incompressible MHD equilibria with density
o(r) constant on magnetic field lines and streamlines. The complete system of equations under consideration can
be written as follows:

2

oV x (curlV) — lB x (curlB) — gradP — ,ogradV7 =0, (A.1)
"

divB =0, divV =0, curl(V x B) =0, (A.2)

p(t)=p(¥ (1)), grad¥(r)) -B=0, grad ¥ (r)) -V =0. (A.3)

Herew (r) is an arbitrary function constant on magnetic field lines and streamlines (hence on magnetic surfaces,
when they exist).
The system (A.1)—(A.3) consists bt 10 equations. It has = 3 independent ana@ = 8 dependent variables:

XZ(X, yv Z)v uz(vlv V2v V37 Blv BZvstlpa P)' (A‘4)

Letus apply the Lie procedure described in Section 3, assuming that the transformations do not depend on spatial
variables, and that the spatial variables themselves are not transformed. Thus we are looking for the transformations
of the type

Y =flixua=x, i=1...,3 W =g"x,u,a)=g*u,a), k=1,...,8. (A.5)
They form a subgroup of the general Lie group of transformations (13).
Remark. Without the assumptions (A.5), handling the computations takes significantly longer time and puts much
higher demands on computer resources. The problem of performing the complete group analysis of the MHD

equilibrium system with density constant on magnetic filed field lines and streamlines (A.1)—(A.3) is therefore out
of the scope of this Letter and will be addressed in a subsequent paper.
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The unknown quantities to be found are the tangent vector field coordinates

k
i = 2200

(We haveg (x,u) = 3f (X, u,a)/da)|a—0=0,i =1, ...,
Applying the corresponding prolonged14) to every equation of the system (A.1)—(A.3), we get the following
system of equations:

£3By +E3B3 —Ef

0B, 0B
+n3( -2+ ) 4y
ax ay

A%
- n%(wg —EpW)V1L—Exp(¥) V2 — E3p(P) V3 — n7(V1— + Vo= 4 V3——=

A%
—ntp(w)— =0,
ox

0By 0B

5 5 8 4 6
B+ £E2Bs —ES + Rt

El 1 53 3 52 n (8 8y> n (

333
By

(A.6)

3)

dB1 0Bs3 V1
(a___) B2 —E7B3—n p(llf)—
z dy

0

V1 A%

oVi\dp¥)
P dy 9z ) dw

(A.7)
0B>

aVo aVo
+— ) —nto@)— —nPp(w)—=
0x 0

9z

Vo Vo Vo \dp(¥) 2 2 2 4 6
\% Vo— + V3—— — )V, — v)Vo — U)V3—EB1 —&5B
( 18 + V2 3y 3Z) v ETo(W)V1—E5p(W)V2—E50(W)V3 —§B1 — §7B3
A
—n?p(¥)— =0, (A.8)
dy
V3 V3 V3
E0B1+E3B2 — &5 —n'p(¥) 5= — nzp(‘lf)—ay -~ n%(%—az — &3 p(W)V1
Vs Vs aVa\ do(¥) dB1 B3
7 3 3 4
— Vi— 4+ Vo——+ V3 — U)Vo — )V -+ —
n( o +28y+ 8z>dl1/ EpW)V2—E30(W)V3+1 8z+8x
0Bz 0B2
5 4 5
— — —— )| —&37B1 —&3B> =0, A.9
n ( 3y 9z ) 53 1 53 2 ( )
e+ £ +E5=0, (A.10)
EL+ES+ES=0, (A.11)
aVo 0V3 A% A% 0By 0B3 331 0B1
4 5 6 1 2 3
= _ = — — L =) g — 1% 1% B
77( oy 8Z)+n 3y +7n 3z +77<8y + 8z> % P +$2 1+$3 1+Ez 2
+E3B3—3Vo — £2B1— £5B1 — £5V3 =0, (A.12)
V3 V1 Vo Vo 0Bz 0B1 B> B>
5 6 4 2 1 3
== < —< = <3 V. V. B
"( e ax)+'7 oz 7 ox +n<8z+8x> T ox G. TEV2 V2B
+£2B3 — £V — 1By — £3B, — £7V1 =0, (A.13)
aVo aVp BA%) BA%) 0B1 0B d0B3 0B 9B3
6 4 5 3 1 2
-z - - — ) _pt= V. V. B
n( 3y 8x)+n o +7n 3 +n(8x+8y> Uiyt PR +$1 3+$2 3+El 1
+E3By—£9vy — €8V, — £l B3 — £2B3 =0, (A.14)
v oy oy
4 5 6 7 7 7
—_— —_— —_— B B B3=0, A.15
8x+n 8y+n 92 +& B1+& By +&3B3 ( )
v oy oy
e Vit eV ElVa=0. (A.16)

ox ay 0z
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According to (19), we need to solve the above ten determining equations under the condition that the original
equations are also satisfied. For this purpose, we express ten derivatives

av ov d0B3 Vi Vs aVa V3 P oP P

ax’  dy’ 9z ax' ax x99z ax 9y 0z
from the system (A.1)—(A.3) and substitute them, together with explicitly written prolonged vector field coordinates
(16), into (A.7)—(A.16).

To solve the resulting system, and obtain the tangent vector field coordinates (A.6), one should use the fact
that the latter do not depend on derivatiwésSetting in all ten determining equations the coefficients at different
derivatives to zero, we get 141 dependent partial differential equations on 8 unknown fupétiansn,8.

Using theRi f package in MPLE software to reduce this system, we obtain the following equations:

nt=n V1, BL, W),  n?>=n?(V2, B2, ¥),  n°=n3(Vs, B3, ¥),
n*=n*V1, B, W),  n°=n°(Va, B2, ¥),  n°=n5Vs, Bs, W),
N =nl(W). (A.17)

When these equations are substituted into the original system, it reduces to as few as 21 independent equations
which are integrated by hand to give the infinitesimal operator

3 3
_ By _ 0 d
X= k§=1: (M(llf)—w) +(C1—NW)) Vk) vt ;(M(W)Vk + ClBk)—aBk

1 d a
+ (——(V~B)M(lI/)—i—2C1P+C2>—+2,0N(lI/)—. (A.18)
1% P ap

Here M(W) = MW (r)), N(¥) = N(¥(r)) are arbitrary functions constant on magnetic field lines and
streamlines, and’y, C» are free constants.

The operator (A.18) is evidently a general linear combination of infinitesimal operators (20)—(23).

We now verify that they form a Lie algebra basis. Indeed, their commutators are

[X(l), X(Z)] — [X(l), X(4)] — [X(Z), X(3)] — [X(?’), X(4)] =0,

[X(Z), X(4)] — _Zx(4)’ [X(l), X(3)] — Q(W)X(l),
where
e — g P W) do(¥)
QW) =N() —2p) = M) ==,

Thus the part (i) of the theorem is proven.

(ii) Now we show that the operatoss®, X © (24), (25) are admissible for compressible MHD equilibria with
the ideal gas equation of state and entropy constant along the streamlines. The complete system of equations unde
consideration in this case is

1 V2
oV x (curlV) — —B x (curlB) — gradP — ,ograd7 =0, (A.19)
"
divB =0, divpV =0, curl(V x B) =0, (A.20)
grad@ (r)-B=0, grad (r)-V =0, (A.21)
P=p" exp(i), grads -V =0. (A.22)
Cy

HereW (r) is an arbitrary function constant on magnetic field lines and streamlines. It is needed because the function
N(r) with the same properties enters i
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The system (A.19)—(A.22) consists b= 12 equations. It haga = 3 independent and: = 10 dependent
variables:

X=(x,y,2), u=(Vy, V2, V3, B1, B2, B3, ¥, P, p, S). (A.23)

In a manner parallel to that in (i), we look for a subgroup of Lie point transformations of the type (A.5). Applying
the operatov (14) to every equation of the system under consideration, we get the following system of equations:

0By 0Bq 0B1 0B3 A%
4 4 8 5 6
B B3 — - — By — 9Bz — ) —
52 2+§33 514‘77( ax 8y)+n(8z ax) 512 513 77,0( ) 3y
A% Vi1 A% oVi\dop(¥)
3 1 1 1
— w—— )V — )V, — V-0 Vie—= + Vo= + V3
n°p¥) Elp(W)V1—EpW)Va—E3p(W)V3 77(18 +28y+ az)dlI/
av
(u/)—l =0, (A.24)
dB> 0B 0Bz 0B Vo
5 5 8 4 6 3
B Bz — i I 072 L w2 _ W
§7B1+&3B3 Eg+n(8x 8y>+n( PR 8z) nto( ) n°p( )
Vs Vs AVa\ dp(¥)
7 2 2 2 4 6
—p(Vi—2 + Vo2 1+ Vs - )V — W)Vo — W)V — 4B, — £5B
77(18 +28y+ 8z>dl1/ ETp(W)V1—E5p(W)Vo—E3p(W)V3 —&5B1 — &7)B3
JV:
(u/)—z —0, (A.25)
dy
V3 V3 A%
szl+s§Bz—s§—nlp<W>—ax —nzpwf)—a —n%(%—az —&p(W)W1
Vs Vs Va\do(¥) 5 3 4 0B 0B3
Vi 4 Voo 4 Vg2 - o)V, — W)Vt — 222 4 222
(18 +28y+ 38z>dl1/ EpW)Va—E3p(W)Van 3z °x
0Bz 0B>
5
- B —£2B, =0, A.26
+77<8y az) E3B1—E3B ( )
gre+e8=0, (A.27)
p(&1 + &3+ E3) + Vag] + Va3 + Vs =0, (A.28)
Vo  dVa a1 a1 3B, 9Bs3 3B, 3B,
4 5 6 1 2 3
e = -2 R ) I e S it 1% 1% B
"( dy az)+” ay g T <8y 8z) dy 9z TEVIHEVIHE B
+E1By—E3Vo —€2B1 — £3B1 — £3V3 =0, (A.29)
Vs  aVy Vs Vs B3 9B 9Bz 30B;
5 6 4 2 1 3
== —< - ) - —< 1% 1% B
”( oz ax)+” oz 1 ox T <8z 8x> Tx Mg tAVe eVt EB
+E2B3—E3Va—E1 By — E3Br — E2V1 =0, (A.30)
aVo 0Vp A% A% 0B1 0B 3B3 0B3
6 4 5 3 1 2
L= -2 -2 —m ) = - 1% 1% B
77( ay 8)6)—“7 dx i dy ”(ax 8y> 77 dx dy +$1 3+$2 3+El 1
+ 3By —£9v1 —E3Vo — €1 B3 — £2B3 =0, (A31)
B4 B4 W
4 5Y% 6 7 7 7
— = B B B3 =0, A.32
N +7 By 2z +& B1+§,B2+638B3 ( )
v W W
"l_a +7 Zay +n38—+sl7v1+s§v2+s37v3=o, (A.33)
10
S
ns_(ypy 1,0 PN )exp<_>:o, (A.34)
Cy Cy
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N as as
199 | 200 300
7 ox + ay + 0z
This system becomes the system of determining equations after using the fact that the original Egs. (A.19)—
(A.22) are satisfied, and upon the explicit substitution of prolonged vector field coordinates (16).
The unknown quantities to be found are the tangent vector field coordinates

+ &80 + 0, 4 0y =0, (A.35)

gk (u, a)

. k=1....10 (A.36)
da a=0

n*(u) =

To ensure that the original Egs. (A.19)—(A.22) are satisfied, we use them to express the quantities

o o 0B3 0B3 V1 Vo V3 V3 N N N
ax’ 9y’ ox 9z dax dx ox 93z  ax 9y 9z
and substitute them into Egs. (A.24)—(A.35).
M APLE software shows that after setting the coefficients at different derivatives to zero in all twelve determining
equations, one gets 187 dependent partial differential equations.
To be able to perform computations in reasonable time, we make a simplifying assumption, supposing that the
tangent vector field coordinates (A.36) depend not on all variahlbat only on some of them, as follows:

’ ’

=0t w),  =n?(v,w),  P=ndva,w),  nt=n*B,  °=n°(B),
®=n%B3z), n'=0,  B=nd), =00, ¥), 9P=nPw). (A.37)

We remark that other choices of simplifying assumptions, when the functforepend no more than two
variables, did not give more general results than the choice above.

Under the assumptions (A.37), the 187 equations mentioned above can be reduced @msimgwth Ri f
package) to only ten independent equations, from which only two are partial differential equations, and the other
eight are algebraic:

e Vitn'% + (v = Deun®) e V2% + (v — Dewn®)
2cyp ’ 2cyp ,
o Va(n'% + (v = Deun®) o= Bi(n*p + ycun®)
2cyp ’ 2cyp ’
s_ Be0Optye®) o Bslptyem’) 7
2cyp ’ 2cyp ’ ,
s_ P0'% +yeun® an® _ at p an® _n° (A.38)
7 Cop T W yoy o p '

The solution of the system (A.38) directly yields the infinitesimal operators (24), (25). This proves the part (ii)
and so completes the proof of the theorerm

Appendix B. Alternative proof of Theorem 1
(i) First, we prove that the operataf® is admissible for the system (1), (2) in the case of incompressible

plasma.
For the cas& = 1, we can writeh(r), ¢(r) in the Bogoyavlenskij symmetries (5) as

b(r) =ncoshB(r)), c(r) = nsinh(B(n)). (B.1)
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Then forn =1, a(r) = 1 the symmetries (5) become

By = cosi{B(r))B + sinh(B(1)) /o V., V1= &iﬂ(j))B + cosh(B(N)V,
82 _ BZ
pr=p, P=P+—21" (B.2)
21

these transformations have additive Lie group structure [2]. Wrigixg = t M (r)/./up, and treating as a group
parameter, we find according to (15):

E(V,B,p,p)=0, i=123
V1 M(r) 9B1
(n* 0% n3) = S| =B—, (" n° %) =—| =VM(©),
T =0 1274 T =0
Py M(r)
n'=0, =" =-=——(V-B).
ot =0 1%

This set of tangent vector field coordinates corresponds exactly to the infinitesimal operator (20).

To get the infinitesimal operators (21) and (22) from Bogoyavlenskij symmetries (5), wé ke const=
exp(td), c(r) =0, a(r) = exp(N(r)t), where N(r) is constant on magnetic field lines and streamlines and
8 = const. TherC = exp(27§), and the symmetries become

B1 = exp(t$)B, V1= eXp(r((S — N(r))V, p1= exp(ZIN(r))p, P1 =exp2td)P.

Treatingr as a group parameter, we find the corresponding infinitesimal operator
3% ) 9 9
X=(8—-N(r Vie—4+06) Bi—— +25P—+2N(")p—,
( ());;1 v ,;1 “IE: 35 H2N s

which is a superposition ot @ (21) andx® (22).
Finally, the operator (23) represents the shiffs= P 4+ Cp, Co = const, and thus is evidently admissible by the
MHD equilibrium equations, which depend only on the derivatives of pressure.
The commutator relations are given in Appendix A. This proves part (i).
(i) To prove that the operators (24), (25) are admitted by the compressible MHD equilibrium equations (1), (2),
(4) for any density function, we take the transformations (7), (8) with the following choice of parameters:
a(r)=exp(N(r)7), b =exp8t),
whereN (r) is a function constant on both magnetic field lines and streamlines. Then the formulas (7), (8) become
a Lie group with respect to addition in parameter
p1= exp(ZN(r)r)p, B1 =exp(s7)B, Vi= exp((8 — N(r))r)V,
P1 =exp25t) P, 51=S+2cv(8 - yN(r))r. (B.3)
The tangent vector field coordinates corresponding to this Lie group of transformations are found according to (15):

gl=£2=£3=0, 9'=Vi(6—N®), n'*t3=Bs, =123,
n'=2NMp,  n®=25P,  n°=2c,(5—yND).

These tangent vector field coordinates give rise to the infinitesimal operators (24j(¢set 0) and (25) (set
8 = 0). This completes the proof of part (ii) of the theorenm
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Appendix C. Proof of Theorem 2
The following lemma is necessary in the proof of Theorem 2.

Lemma 1. The incompressible MHD equilibrium systemExgs. (1)—(3rdmits the discrete symmetries
B, =+B, V==V, P1=P, o1=p (C.2)
and
B1=V.up, Vlzi, P1=—P—7BZ+V2M'O,
v 2u
Compressible ideal MHD equilibrium equatiofts, (2) with ideal gas state equatig@), for arbitrary density,
admit the discrete symmetriés.1).

p1=p. (C.2)

Proof of Lemma 1. The proof is based on the complexification of parameters of known continuous point
symmetries of the systems under consideration.

First we consider the incompressible MHD equilibrium system (1)—(3). By Theorem 1, it admits the infinitesimal
operatorsk®, x@  x® (20)—(22) and therefore the continuous Lie point transformations (27)—(29).

If we take an equilibrium configuratiofV, B, P, p} and apply the transformation (28) with= 71 and then
(29) with T = 12, we get a new solution

p1= eXFXZN(I’)‘[z),O, B1 =exp(r1)B, V1= exp(rl — N(I’)‘[z)V, Pi=P.

Now, using the combinationg1 = wi, N(r)t2 =0}, {t1 =mi, N2 =7mi}, {11 =0, N(r)1o = —mi}, we
get all transformations (C.1), withy = p.

To prove that the discrete symmetry (C.2) is admissible, we take an equilibrium configykatiBnP, p} and
apply first the transformation (27) witht (r)t = ,/up mi/2, and then the transformation (28) with= —mi /2.
The final result is real and coincides with the required formula (C.2). The demgtypot transformed.

The existence of the refection symmetry (C.1) for the compressible case is proven the same way as for
incompressible, using the operators (24), (25) and the corresponding transformations (31), (32). Lemma is
proved. O

Proof of Theorem 2. (i) In the caseC > 0, we denote = ¢2, n = +1,0 = +1, A = +1, and writea(r), b(r),

¢(r) in Bogoyavlenskij symmetries (5) as

a(r)=nexp(N()), b(r) =g cosHB(r)), c(r) = Ag sinh(B(n)). (C.3)
Therefore the transformations (5) become

sinh(B(r)) B+ g0 coshB(r))
nexp(N (1)) /1o nexpN(r))

(C.4)

B1=go cosi{B(r))B + gAsinh(B(r)) /o V, Vi=gh
qZBZ _ B%
21 '

From the original solutiofV, B, P, p}, using appropriately the reflections (C.1) and the mixing transformations
(27), we can obtain a solution

p1= exp(ZN(r))p, P = qZP +

B1 =0 coshB(r))B +Asinh(8())/mpV,  Vi= AS:%)) Bto Cosﬂnﬂ(f))v’
B2 - B2

pr=p,PL=P+ >
"

(C.5)
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This intermediate solution can be scaled by applying (28) within g and (29) witht = 1 to obtain (C.4).
In the caseC < 0, we denot& = —¢2, n==+1,0 =+1, A =+1. Then

a(r) =nexp(N(r)), b(r) =ogsinh(B(1)), c(r) = Ag cosh(B(r)).

Therefore the transformations (5) can be written as

o B coshB(r)) sinh(B(r))
B1=go sinh(8(r))B + grcoshB(r))/up V. vl_q,\—n exp(N(r))mB 9 exaN ey
qZBZ + B%

J— — 2 J—
pr=exp2N(r))p,  P1=—q°P o

(C.6)

We will show that this transform can be found from an original solution by combining (27)—(29), (C.1), (C.2).
First, to the original solutiofV, B, P, p} we apply (C.2) to obtain

B B2 4+ V2
— . p=—p-— Ty
1P 2p

In the way described above in this proof and using (27)—(29) and (C.1), the soj\M¥0B,, P>, p2} can be
transformed to another solution

B> =V./up, Vo= (C.7)

. sinh(B(r)) Ba + ¢ coshB(r)) Va,
nexp(N (1)) /1n2 nexpiN (1))

B3 =g cosiB(r))B2+ go sinh(B(r))/mp2 V2, V3=

q282 _ BZ
p3=exp2N(N)p2,  P3=q’P2+ # (C.8)
After the substitution ofV2, Bz, P2, p2}, the new solution (C.8) coincides with the desired form (C.6).
The fact that the operators (20)—(22), and thus the corresponding transformations (27)—(29), can be obtained
from Bogoyavlenskij symmetries (5) is proved in Appendix B. This proves part (i).
(i) Consider the Bogoyavlenskij symmetries (7), (8) for compressible MHD equilibria #vith0, a(r) > O.
To an equilibrium{V,B, P, p, S} we apply the Lie point transformations (31) with= Inb and (32) with
{tr =1, N(r) =Ina(r)}. This converts the original solution exactly into the form (7), (8).
Suppose now thab < 0, a(r) > 0. Let {V,B, P, p, S} be an MHD equilibrium. Then by applying to it
first (C.1) in the formB — —B, V — —V, and then the Lie symmetries (31) with= In|b| and (32) with
{t=1, N(@)=Ina(r)} we obtain

b

=—V, P =b’P,
a(r)

pr=a’(r)p, Bi=bB, Vi
S1=58+2c,(In|b| —yInja(r)]).

This form coincides with the transform (7), (8).

The cases when(r) can be negative are treated in the same way. In the points wiiere: 0, an additional
reflection transformation (C.1) in the forBi— B, V — —V needs to be applied to the original solution.

Thus the composition of Lie symmetries (31) and (32) yields the transformation (7), (8) of compressible MHD
equilibria.

Conversely, the operators (24), (25), and so the transformations (31) and (32), the are implied by Bogoyavlenskij
symmetries (7), (8), as shown in Appendix B.

This proves part (ii) and completes the proof of Theorem2.
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