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Under the assumption of axial symmetry, the quasistationary phase of the initial stage of a volcanic eruption
is modeled. The constructed model allows calculation of the distribution of the regimes of magma flow in the
volcanic channel and the quasistationary distribution of a suspension of gas-dust volcanic ejections in the at-
mosphere from the prescribed parameters of the magmatic source. The model can be used for evaluation of
the parameters of the atmosphere above an erupting volcano, the height of a dust column during the quasis-
tationary phase of eruption, the thickness of the layer of ash fallen on the earth, and other forms of action
of volcanic eruptions on the environment.

Introduction. A volcanic eruption is one of the most destructive types of natural disasters. We know about
the horrific effects of the eruption of such volcanos as Vesuvius (A.D. 79), which destroyed the towns of Pompeii and
Herculaneum, Thira (formerly Santorin) (1650 B.C.), which destroyed Minoan civilization, Krakatau, which ejected
about 1000 cubic kilometers of magma (1883, energy of eruption about 370 Mtons in TNT equivalent), or Mount
Tambora, which took 92,000 lives (1815, energy of eruption 25 Gtons). Although eruptions of this power usually hap-
pen once every several decades or centuries, their environmental effects and possible scale of destruction are so great
that evaluations of their consequences and the pattern of the process are an extremely important and topical problem.

The influence of volcanic eruptions on the environment is very diverse. It includes direct destruction of the
adjacent regions (to 1000 km2 for large-scale eruptions) and the formation of gas-dust clouds enveloping the earth and
not only being a severe hazard to aviation but also changing the gas composition of the atmosphere substantially,
which can result in local and global (for example, in prehistoric times) climatic changes [1]. Eruptions of gas-saturated
magmas expressed as the explosive or continuous flow of gas-dust jets out of the volcanic neck present the greatest
hazard to man. Unlike purely lava eruptions, the velocity of propagation of their products is much higher, while the
flow rate of magma can experience changes of orders of magnitudes with transition to a catastrophic stage during a
very short period.

It is well known [2–5] that volcanic eruptions usually begin with small ejections of gas and lava but, at sub-
sequent instants, the process can become explosive; at the explosive stage, dust, volcanic ash, and gas consisting of
steam and different compounds of sulfur, nitrogen, carbon, and chlorine are ejected into the atmosphere in large
amounts. The type of volcanic eruption is largely determined by the presence of dissolved volatile components in the
magmatic melt which separate into the free phase, as the magma rises to the surface, and by the viscosity of the mag-
matic melt. Depending on these parameters, eruption can vary from a purely lava type to a purely gas type with a
continuous or explosive ejection of a gas-dust mixture.

Quantitative evaluations of the influence of volcanic eruptions on climatic changes on the earth are given, for
example, in [6–10], and they demonstrate that large-scale eruptions can result in global changes on the planet.

Attempts at modeling mathematically the processes involved in volcanic activity on the earth have been made
recently in a number of works. In this connection, noteworthy is [11], in which the method of prediction of the propa-
gation of volcanic aerosol ejections into the atmosphere has been set out, and the series of investigations of Barmin
and Mel’nik [12–16] into the modeling of volcanic eruptions of high-viscosity, gas-saturated magmas. An attempt at
modeling numerically the gasdynamic processes in the atmosphere after a high-power volcanic explosion was made for
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the first time in [17]. The authors assumed that the gas and dust are concentrated in the hemisphere at the initial in-
stant of time and then the gas mass heated to 1700 K is expanded at an excess pressure of the gas of 420 atm. This
corresponds to the volcanic explosion of Krakatau with an energy of 370 Mtons [18].

A model of a volcanic explosion in which consideration is given to the propagation of the shock wave
formed and the motion of a dust cloud has been proposed in [19]. The results of mathematical modeling of jet erup-
tions with prescribed values of the physical parameters in the outlet cross section of the volcanic neck have been pre-
sented in [20].

In [21], we have modeled mathematically the behavior of a gas and a dust in the atmosphere in the upper
part of the volcano’s neck in the initial stage of explosive eruption. From the results of calculations we have found
the empirical dependence of the amplitude of the shock wave on the distance to the epicenter of the eruption. The
general pattern of change in the concentration of the dust near the volcanic crater is given, and the dependence of the
height of the gas-dust column on the explosion energy is investigated, as is the dynamics of ejection of ash in vol-
canic eruption.

In the present work, we model the quasistationary phase of the initial stage of a volcanic eruption, i.e., the
period of time where the parameters of a magmatic source change slowly as compared to the processes in the volcanic
channel and in the atmosphere. Not only is the flow of eruption products in the atmosphere considered but also the
stationary distribution of different regimes of magma flow in the volcano’s neck. The problem is solved in a cylindri-
cally symmetric formulation.

Physicomathematical Model of Motion of Magma. The volcanic system will be modeled by a source with
a prescribed pressure in it and a cylindrical channel of constant cross section with rigid walls (the channel connects
the source with the earth’s surface). We will consider magma to be a Newtonian fluid with a viscosity dependent on
the concentration of the dissolved gas and the temperature [16]:

µ = µ0 exp 

− 

A
RT

 exp (− Bcm) − 1

 ,   µ0 = 10

4
 − 10

9
   Pa⋅sec . (1)

The relationship between the pressure of the gas dissolved in the magma and the equilibrium value of the
mass concentration is given by the formula [22]

cm = ks √ pm
 ⁄ pa  ,   ks = (13 − 20)⋅10

−3
 . (2)

According to [16], flow in the volcanic channel can generally be subdivided into five regions. In the lower
region (region 5 in Fig. 1), where the dissolved-gas pressure exceeds the saturation pressure pc for a prescribed initial
concentration c0 (pm > pc = pac0

2 ⁄ ks
2), magma represents a homogeneous viscous fluid with viscosity (1). Lying above

is the nucleation zone (zone 4) in which bubbles are formed at pm D pc. It is assumed that bubbles are not formed and
do not disappear beyond the nucleation zone. According to the evaluations of [15], the length of the nucleation zone
is substantially smaller than the length of the channel; therefore, we can consider it as the surface. In the central re-
gion (region 3) where pm < pc, there flows a bubble liquid; here, by virtue of the higher viscosity bubbles are "frozen"
into the magma and the pressure in the bubbles differs from the magma pressure due to viscous stresses. As the
magma rises and the pressure in it drops, bubbles grow because of degassing. We have flow of a gas suspension re-
sulting from the destruction (fragmentation) of the bubble medium in the upper portion of the channel (region 1). The
fragmentation zone (zone 2) will be considered as a surface analogously to the nucleation zone.

Let us describe the motion of magma in the region of a homogeneous regime. As is shown in [12], for char-
acteristic values of c0 and ks we can disregard a change in the velocity of rise of the magma. If we additionally dis-
regard the resistance in the volcanic channel, in the region of homogeneous flow we have

pm = p0 − ρ0gz ,   vm = v0 ,   cm = c0 . (3)

When the pressure of the homogeneous magma drops to the value of the saturation pressure pc, we have tran-
sition to a nucleate (bubble) regime. We will assume that n0 bubbles of radius a0 instantaneously arise in a unit vol-
ume of the magma. The system of equations of the nucleate regime in dimensionless variables has the form [13, 16]
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The dimensional quantities are expressed by dimensionless ones as follows:
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ρ0g
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The temperature of the bubble liquid T0 is set constant.
We will assume that the transition from the bubble liquid to a gas suspension occurs when the volume con-

centration of bubbles attains the critical value αc. We write the laws of conservation of mass, energy, and momentum
for the fragmentation zone:

Fig. 1. Diagram of the distribution of difference regimes of flow of eruption
products in the volcanic channel: 1) gas suspension; 2) fragmentation zone; 3)
nucleate regime; 4) nucleation zone; 5) region of a homogeneous magma; 6)
magmatic source.
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ρ2α2v2 = vb (1 − αb) ρm ,   ρ1v1 (1 − α2) = vbαbρg ,
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2
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2

2
 +

+ (ρm (1 − αb) sm + ρgαbsg) T0vb + (pm (1 − αb) + pgαb) vb .

(7)

The last two equations of system (7) represent energy- and momentum-conservation equations for the entire mixture
rather than for the condensed and gaseous components separately, since to compute them we must know the values of
the exchange terms in the process of destruction, which substantially depend on the mechanism of the process and are
unknown. Instead, let us suppose, following [15], that a fluidization condition is attained at exit from the fragmentation
zone, i.e., the gas velocity relative to particles is such that the resistance force acting on the particles is equal to their
weight. Furthermore, let us suppose that the density and temperature of the magma before the fragmentation zone are
equal to the density and temperature of the condensed gas-suspension particles and the gas constant, while the gas sus-
pension obeys the Mendeleev–Clapeyron equation.

Thus, system (7) is supplemented with the equations

9

2
 
µv

ad
2 (v1 − v2) = ρ2g ,   ρ2 = ρm ,   T2 = T0 ,   p1 = 

ρ1

η
 RT1

(8)

and becomes closed.
We used the model employed in [21] to describe the motion of a gas-dust suspension in the upper part of a

volcanic channel and in the atmosphere.
It is assumed that the suspension is monodisperse and the dust particles are spherically shaped and possess

heat capacity characteristic of solid products of volcanic eruptions. The volcanic-channel cross section is considered to
be cylindrical.

In the case of axial symmetry of the eruption, the gasdynamic flow of eruption products is described by the
system of equations of gas-suspension mechanics [23]
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System (9) is supplemented with equations of state in the form

e1 = 
p1

(m − 1) ρ1
 ,   e2 = ∫ 

T0

T

sm (T) dT ,   p1 = 
R

η
 ρ1T1 . (10)

The quantities (α1ρ1) and (α2ρ2) employed in (9) represent the reduced densities of the gas and the dust
(masses of the corresponding phases in a unit volume of the mixture).

Remark. In calculating the steady-state flows of the gas-dust suspension in the upper part of the volcanic
channel, one must take into account the fact that if the flow is subsonic at exit from the channel, the exit pressure is
equal to atmospheric pressure; otherwise, as a boundary condition, it is necessary to equalize the flow velocity and the
velocity of sound.

Procedure of Calculation and Processing of the Results. Let us describe the method of calculation of
steady-state flow of eruption products in the atmosphere and of the distribution of different regions of motion of the
magma and the gas suspension in the volcanic channel. For computations we must know the values of the following
parameters: 1) pressure in the source p0, 2) initial concentration of the gas in the melt c0, 3) parameter in the empiri-
cal law of solubility ks/√pa, 4) initial velocity of rise of the magma v0, 5) viscosity amplitude µ0, 6) magma density
ρ0, 7) length of the volcanic channel H, 8) radius of the volcanic channel r0, 9) critical pressure of transition to a nu-
cleate regime pc, and 10) critical value of the volume concentration of bubbles αc.

Setting the values of the parameters of the magma and the source, we easily determine what kind of flow re-
gime we will have in the lower part of the neck: if the pressure of the magma flowing out of the source is higher
than the saturation pressure of volatile components dissolved in the magma pc, a homogeneous magma flows out of
the source and it becomes a bubble liquid as soon as the pressure drops to the value of pc. The coordinate of transi-
tion is determined from Eq. (3):

zc = 
p0 − pc

ρ1g
 . (11)

If the depth of the volcanic channel H is such that the pressure fails to attain the value of pc before the channel
emerges, then a homogeneous magma flows out of the volcanic neck.

The parameters of steady-state flow of a bubble liquid were calculated by the Runge–Kutta method of fourth
order.

According to the method, we assumed in the calculations that the transition layer between the bubble liquid
and the gas suspension is at a depth where the volume concentration of bubbles α attains the critical value αc. Calcu-
lation according to the algorithm described above enables us to find the depth of location of the fragmentation zone,
setting the value of αc. If the value of α does not attain αc over the entire length of the channel, this indicates that
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a bubble liquid flows out of the volcanic neck in the steady-state regime of eruption for the given set of parameters.
The surface parameters of the liquid are determined according to the same algorithm.

Gas-suspension flow in the volcanic channel and in the atmosphere was calculated by the target method for
the prescribed position of the beginning of the gas-suspension zone relative to the magmatic source.

At each calculation step, we prescribed, by the target method, the assumed length of the gas-suspension region
Hd; next we solved system (9)–(10) with fixed boundary conditions on the fragmentation wave (the conditions had
been obtained by application of system (7)–(8) to the bubble-liquid parameters computed earlier). We specified non-
flow conditions on the channel walls and the earth’s surface.

We performed computations until the process became steady-state (usually for about 300 sec). Thereafter the
value of Hd changed and the next step began. The criterion of completion of calculation by the target method was
finding a value of Hd such that the velocity of the gas component of the mixture at exit to the atmosphere was equal
to the velocity of sound (see [16] and the remark at the end of the previous section).

System (7)–(8) was solved by the large-particle method [24] according to the scheme employed in [21].
Thus, by prescribing the flow rate and properties of the magma and the diameter of the channel, we can cal-

culate, by the scheme described, the neck length corresponding to these parameters, the steady-state distribution of the
regions of flow of the homogeneous magma, the bubble liquid, and the gas-suspension, and also the values of the
characteristics of the eruption products throughout the volcanic channel.

Given below are two examples of numerical calculations according to the algorithm described.
If we know the depth of the volcanic neck and the properties of the magmatic melt, while the magma flow

rate is unknown, we must also use the target method to calculate the steady-state regime of eruption. The above-de-
scribed problem of finding the length of the neck and the parameters of eruption products is solved at each step on
the basis of a certain assumed value of the magma flow rate. The obtained value of the channel length is compared

TABLE 1. Values of the Parameters of a Magmatic Source and the Characteristics of Magma Employed in the Examples of
Calculations

Quantity Calculation I Calculation II Quantity Calculation I Calculation II
p0 2.5⋅108 2.56⋅108 ρ0 5000 5000
c0 0.08 0.08 H 11 000 7500

ks
 ⁄ √pa 1⋅10–5 0.5⋅10–5 r0 300 300

v0 15 15 pc 1⋅108 6.4⋅107

µ0 1⋅104 1⋅104 αc 0.83 0.87

Fig. 2. Lengths of the regions of flow of a homogeneous magma (1), a bubble
liquid (2), and a gas suspension (3) in the volcanic channel for the examples
considered (I and II). z, km.
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Fig. 3. Quasistationary distribution of the volume concentration of a volcanic
dust in the atmosphere α2 for the examples considered (I and II). The gray-
color intensity is in proportion to α2.

Fig. 4. Quasistationary distribution of the vertical component of the gas veloc-
ity u1 in the atmosphere for the examples considered (I and II). The gray-color
intensity is in proportion to u1, when it is positive (upward direction). In the
hatched regions, the quantity u1 is negative (regions of descending motion of
the gas).

Fig. 5. Quasistationary distribution of the gas temperature T1 in the atmosphere
for the examples considered (I and II). The gray-color intensity is in proportion
to T1. z and r, km.
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to that prescribed and accordingly the value of the magma flow rate is changed, after which the next iteration is per-
formed. As a result, we will find the steady-state flow rate and parameters of flow of the eruption products for the
given depth of the neck and properties of the magma.

Examples of Calculation. We give two examples of numerical calculations of the steady-state flow of erup-
tion products in the volcanic channel and the atmosphere based on the model described. The values of the parameters
of the magmatic source and the characteristics of magma employed in calculating are given in Table 1. In the compu-
tations, we employed the requirement of equality of the velocity of the gas on emergence to the velocity of sound.

Subdivision of the volcanic channel into the regions of homogeneous flow, a bubble liquid, and a gas suspen-
sion for the cases under study is given in Fig. 2.

The parameters of the atmosphere and the gas-dust suspension above the volcano were determined in the re-
gion 0 < r < Rr and 0 < z < Hr. At the boundaries z = Hr and r = Rr, the parameters of the gas were considered to be
equal to the parameters of an undisturbed atmosphere.

Results of the calculations of the flow-parameter distribution in the atmosphere are shown in Figs. 3–5. Figure
3 gives the steady-state distribution of the volume concentration of dust in the atmosphere. It follows from the figure
that the height of the dust column in steady-state eruption is more than a kilometer.

An analogous map for the vertical component of the gas velocity is shown in Fig. 4, where the presence of
the vortices in the steady-state flow is obvious.

Figure 5 shows the temperature distribution of the gas phase of the gas suspension.

CONCLUSIONS

The constructed model can be used for evaluation of the parameters of the atmosphere above an erupting vol-
cano, the height of a dust column during the quasistationary stage of eruption, the thickness of the layer of ash fallen
on the earth, and other forms of action of volcanic eruptions on the environment. The model can easily be corrected
in order to allow for the influence of atmospheric phenomena (wind, cyclones, etc.) and the surface features of the ad-
jacent territories on the process of eruption.

NOTATION

a0, radius of bubbles arising when magma goes to the state of a bubble liquid, m; ab, radius of gas bub-
bles in the magma, m; ab′ , dimensionless radius of gas bubbles in the magma; ad, radius of dust particles, m; A
and B, constants dependent on the magma properties (A, Pa⋅m3/mole; B, dimensionless); Ar, Archimedes number;
c0, volume concentration of the gas dissolved in the magma at exit from the source, dimensionless constant; cm,
running volume concentration of the gas dissolved in the magma in the channel at a given depth, dimensionless
variable; Ca, dimensionless constant; d, diameter of the volcanic channel, m; D, coefficient of diffusion, m2/sec;
e1 and e2, internal energy of a unit mass of the gas and the dust, J/kg; f = (fr, fz), bulk force of interphase inter-
action, N/m3; fr and fz, projections of the force onto the r and z directions respectively; Fw, dimensionless force of
resistance of channel walls; g, free-fall acceleration, m/sec2; H, length of the volcanic channel, m; Hr, height of the
computational region, m; Hd, length of the gas-suspension region, m; m, dimensionless adiabatic exponent of the
gas; n0, number of gas bubbles in a unit volume at the instant of formation of a bubble liquid, m−3; nb, number of
gas bubbles in a unit volume, m−3; nb′ , dimensionless number of gas bubbles in a unit volume; nd, volume concen-
tration of the dust, m−3; Nu1 and Nu2, dimensionless Nusselt numbers of the gas and the dust; p0, pressure of the
magma in the magnetic source, Pa; p1, pressure of the gas in the gas suspension, Pa; pa, atmospheric pressure on
the earth’s surface, Pa; pc, saturation pressure — pressure of the homogeneous-to-nucleate transition of flow, Pa;
pg, pressure of the gas in bubbles, Pa; pg′ , dimensionless pressure of the gas in bubbles; pm, magma pressure, Pa;
pm′ , dimensionless pressure of the magma in the bubble liquid; ks, dimensionless constant, parameter in the solubility
law; pt, dimensionless "total" (weighted) pressure of the bubble liquid; Pe, dimensionless Pe′clet number; r, radial space
variable of the cylindrical coordinate system, m; r0, radius of the volcanic channel, m; R, gas constant, J/(kmole⋅K);
Rr, radius of the computational region, m; q1 and q2, heat fluxes through the particle surface to the gas medium and
into the particles respectively, J/sec; sm, specific heat of the magma substance, J/sec; sg, specific heat of the gas,
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J/(kg⋅K); t, time, sec; T, temperature of the magma in the channel, K; T0, temperature of the magma in the magmatic
source, K; T1 and T2, temperatures of the gas and the dust respectively in the gas suspension, K; u1 and u2, horizontal
components of the velocity of the gas and the dust (in the gas suspension), m/sec; v0, velocity of rise of the magma
flowing out of the source, m/sec; v1 and v2, vertical components of the velocity of the gas and the dust (in the gas
suspension), m/sec; vb, velocity of rise of the bubble liquid, m/sec; vb′ , dimensionless velocity of rise of the bubble liq-
uid; vm, velocity of rise of the homogeneous magma, m/sec; w = (wr, wz) = (u1 − u2, v1 − v2), velocity of the gas rela-
tive to the particles of dust, m/sec; wr and wz, projections onto the r and z directions respectively; z, vertical
coordinate; z′, dimensionless vertical coordinate; zc, coordinate of transition to a nucleate regime, m; α1 and α2, di-
mensionless volume fractions of the gas and the dust in the gas suspension; αc, dimensionless critical value of the
concentration of gas bubbles in the bubble liquid at which transition to a gas-suspension phase occurs; αb

0, dimension-
less constant for normalization of the volume fraction of the gas in the bubble liquid; αb, dimensionless fraction of the
gas in the bubble liquid; αb′ , dimensionless normalized volume fraction of the gas in the bubble liquid; δ, dimension-
less parameter; ε, dimensionless coefficient; η, molar mass of the gas phase, kg/kmole; λ1 and λ2, thermal conductivi-
ties of the gas and the dust, J/(m⋅sec⋅K); µ, coefficient of viscosity of magma, Pa⋅sec; µ′, dimensionless coefficient of
viscosity of magma; µ0, coefficient of viscosity of the "dry" magma, Pa⋅sec; µv, coefficient of dynamic viscosity of the
gas in the atmosphere, kg/(m⋅sec); ρ0, density of the magma in the magmatic source, kg/m3; ρg′ , dimensionless density
of the gas in bubbles; ρt, dimensionless "total" (weighted) density of the bubble liquid; ρg

0, constant for normalization
of the density of the gas in bubbles in the bubble liquid, kg/m3; ρg, density of the gas in bubbles, kg/m3; ρm, density
of magma, kg/m3; ρ1 and ρ2, densities of the gas and the dust respectively in the gas suspension, kg/m3. Subscripts: a,
atmospheric; b, bubble; c, critical; d, dust; g, gas; m, magma; r, region; s, solubility; t, total; v, viscosity; w, wall.
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