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SELF-SIMILAR SOLUTIONS OF ONE-DIMENSIONAL 
PROBLEMS OF GAS FILTRATION WITH A 
QUADRATIC RESISTANCE LAW 

N. A. Kudryashov and A. F. Shevyakov UDC 932.546 

One-dimensional  problems of isothermal gas filtration in a porous medium with a quadratic resistance law 

are considered. For the cases of  plane and axial symmetry o f  the problem under constant initial conditions, 

analytical expressions for the gas pressure and velocity are obtained and an empirical formula for calculating 

the gas pressure is proposed. 

Problems of gas filtration through a cracked and porous medium arise in investigating a number of 

technological processes: separation of mixtures by the methods of gas chromatography, gas fracture of seams, 

propagation of gaseous products in a rock mass in underground detonation of explosives, etc. To describe the motion 

of a gas in a cracked-porous medium, use is made of the system of equations of continuum mechanics: the continuity 

equation, the equation of motion, and the energy equation. However, empirical laws that are established 

experimentally and relate the pressure gradient to the velocity of motion - Darcy's law or Forchheimer's law 

(binomial law of filtration) - are used as the equation of motion instead of the Euler equation. The resistance force 

that is produced in the motion of a gas in a porous medium is determined by the properties of the medium and the 

filtered flow. The dependence of the resistance force on the gas velocity can be considered linear for small Reynolds 
numbers (Re < 1) and quadratic for large numbers (Re > 10). 

Below we consider the case of a quadratic resistance law. For plane and cylindrical symmetries of the 

problem, we are able to find here analytical expressions for the gas pressure and velocity. In the case of plane 

symmetry, an empirical formula to calculate the gas pressure (with a background pressure that is more than 10% 
of the pressure of the inflowing gas) is proposed. 

System of Filtration Equations and Permissible Group of Transformations. Gas filtration in a porous 

medium with large local Reynolds numbers is described by a continuity equation, a quadratic dependence of the 
pressure gradient on the velocity, and an equation of state: 

2 
Ot + d i v  (,oh") = 0 ,  V p = - l p  [ff.[ u ,  P = c p .  (1) 

In the case of one-dimensional (plane, axisymmetric, spherically symmetric) flow of the gas, system (1) is written 
in the form 

= 2 Op +_____0 (pUX,,)=O, OP --PU z, P=cp.  (2) 
Ot x Ox Ox b 

The system of equations of one-dimensional filtration (2) was investigated numerically in I1 1. 

Eliminating the gas density from (2), we obtain the equation 

3 2  _ K O_ (u l  = 0  K - bc2 (3) 
uu t - Ku x + ~ u u x Ox ~x) ' 2 " 
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Let us f ind the  group of transformations of the form 

I I 

x = f l  ( x , t , u , a ) ,  t = ]'2 (x, t, u, a) , u = f3 (x, t, u, a) (4) 

such that  upon substitution of the variables (x, t, u) --, (x', t ' ,  u ' )  Eq. (3) remains invariant [21. According to a 

s tandard  scheme,  for this purpose it is necessary to find expressions for the coordinates of the tangential vector 

field cor responding  to the variables x, t, and u that are determined as 

0, 
= -bSa a=o = a=o ~ 

The  coordinates  of the tangential vector field that correspond to a change in the derivatives are expressed in terms 

of ~1, ~2, and  r / b y  the formulas 

Ou Ou 
~l = DI rl - u~Dl ~ (l = 1, 2 for ~x  and -~- respectively) ,  

~11 = Dl~l -- t t xxDl~  1 - l'txtD1 ~2 (for 02u ) .  
Ox 2 

Here 

0 O O 0 
D I = ~ x  + u x ~ u  ' D2 = - ~  + u t -~u " 

If we take 

E -  uu  t - K u x x  + -~ u u x - K ~ x  = 0 ,  

then from the determining equation 

XEI e=o = $ 1 0 E  ~2 dE  OE OE + + + r OE OE _ 0 

we can find $1, ~2, and r/. As a result we obtain the following formulas for the coordinates of the tangential vector 

field: 

= 1 l ( 5 )  
~1 = 2Clxl +C2c3v,0, ~2 3Clx 2 +  Ca,  r/ = - C l U  

Thus ,  the transformation group permissible by Eq. (3) is independent of the parameter  K and of v when 

v ;~ 0. In the case v -- 0, solution of (3) can be sought in the coordinates of a traveling wave. 

Knowledge  of the coordinates  of the tangential vector field enables us to obtain an explicit form of 

t ransformations (4). Let us consider the quantities that remain constant upon substitution of the variables (5), i.e., 

the invariants of the group of transformations (4) for Eq. (3). Relation (3) can be written in terms of these invariants 

and as a resul t  can be reduced to an ordinary differential equation�9 

When v = 0 the basis of the Lie algebra is formed by the operators 

O X2 0 0 ~x 0 X1 = 0---~ ; = - ~ ;  X 3 = U - ~ u - 2 X  - 3 t - ~ .  

For the l inear  combination X = a X 2  + X1 ,  the independent invariants are 11 = u, 12 = x - at,  i.e., Eq. (3) has a 

solution in the  coordinates of a traveling wave: I1 = f(I2). Hence it follows that u = r iO) ,  where 0 = x - a t ,  a is 

some character is t ic  velocity. 
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Self-Similar  Solutions of the System of Filtration Equations for  v = 0, 1. We find the invariants of Eq. (3) 

relative to the group of transformations of the tension X3: 

X 3 = u Tu - 2x - 3t O-t" 

Using the formula  

du dx  dt  
u 2x  3t ' 

we obtain two independen t  first integrals. As the basis we select the variables 11 = x t  -2"3 and 12 = ut 1/3. Then a 

solution of Eq. (3) can be written in the form u = t - l /3~o(xt-Z3).  If we employ the boundary  conditions 

P (x = 0 ,  t) = P1,  lim (Pux)  = A t  1/3 (6) 
r~0 

for the plane and  axisymmetric  cases, respectively, the pressure of a gas in a porous medium will also depend only 

on the self-similar variable xt  -z'3. Going over to the renormalized self-similar variable 

O = x  

we have the following formulation of the problem: 

(7) 

l d 1 , i f  d r _  Ao2 

OV dO O dO'  dO ' 

f (O ~ oo) = N =  Po/P1 , 

P (x = 0 ,  t) = P1 (v = 0) ,  lim (Pux)  = A t  1/3 (v = 1). 
x-->0 

(8) 

H e r e f a n d  ~, a re  dimensionless analogs of the gas pressure and velocity that are related to P and u by the following 

dependences: 

P = Pl  f (O) ; u =  2 b c 2 / 3 t  ~o (O) ; 

. . 
P1 = P1 ( v = O )  ; P1 = A 2/3b2c 4 ( v =  1). 

(9) 

From system of equations (8) we find the equation for ~o 

d~o_ 3 (10) 
dO + 0~2 +v0--ff--= O. 

When v = 0, we make  in (10) the substitution 

~o = (0. .502- 21/3z) - I  , 

and then, consider ing 0 to be a dependent  variable, from (10) we obtain 

21/3 
d O _  2-1/302 22/3 
dz 

(11) 
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If we take 

/9 = - 22/3y -1 ay 
d z  ' 

then equality (11) becomes the Airy equation for y: 

n 

y - - z y=O,  

whose general solution is the combination of the Airy functions [3 ] 

y = BoA i (z) + AoB i (z). 

When v -- 1, we make the substitution 

= (02 -- 22/30/p)  - I  0 = 21/3  (~,2 _ z ) - I  

d~p 21/3 _ ~p3 
7 -  -0- - z ,  

( 1 2 )  

(13) 

( 1 4 )  

(15) 

from which, for ~p = -y - ldy /dz ,  we also arrive at Eq. (12). 

Knowing the velocity of the gas ~v, we can easily find the expression for its pressure 

2 (16) 
f =  Y , v = 0 , 1 .  

9o02v 

From formula (16) it can be seen that y2(z) coincides with the expression for a gas flux in a porous medium when 

V----0. 
In the case v = O, from (11) and (16) we have 

f (z) = 21/3 dy ~ z  - z y 2  ' 

and,  using the initial and  boundary conditions of sys tem (8), we find that  the solution y(z) is de te rmined  on the 

interval [z0, Zl ], where z0 and Zl correspond to 0 = 0 and  0 --, co. From (12) it follows that 

y (z0) = 0 ,  y (z l )  = 0 ,  (18) 

while from (11) and (17) we can obtain the equalities 

Y(Z~ v f ( - ~ 0 )  ' V f  (2)  (19) = - ; y ( Z l ) =  �9 

This and expression (14) yield the system of equations 

The  Wronskian of the Airy functions Ai and B i is equal to 
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Fig. 1. Func t ion  that  determines  the  dependence  of z o on N for  z I = 3.0. All 

the quant i t ies  a re  dimensionless.  

Fig. 2. D e p e n d e n c e  zo(z  1) for d i f ferent  selected roots z o (v = 0). z o and  z I are 

d imens ionless .  
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Fig. 3. M a x i m u m  root z 0, N, and  W (0 = O) vs. z I for plane mot ion  of a gas in 

a porous  m e d i u m  (v = 0). All the  quant i t ies  are dimensionless .  

1 
w [A i ( z ) , B  i ( z ) ]  = - ~ .  

Knowing  it, we can express  the  constants  A o and  Do 

= 2 - 1 / 6  2 - 1 / 6  x /~  
A 0 - Jr �9 x fN  B i (Z1) , D O = Jr - A i (Zl) . 

(21) 

f rom (20).  Then  (20) will become  the system 

R (Zo, Zl) =- B i (zl)  A'  i (Zo) - A i (Zl) B' i (Zo) = O ,  

_ 2 1 / 3 ]  

F r o m  these  equations with a the  prescribed N we can ob ta in  z o and Zl. If (22) is cons idered  to be the depe n d e n c e s  

zo(zl)  a n d  N ( z o ( z l ) ,  z 1) d i f ferent  Zl will cor respond to d i f ferent  boundary  condi t ions  of problem (8). 

T h e  dependence  z o ( z  1) determined by equali t ies (22) turns out to be nonunique .  Figure 1 p resen t s  the 

func t ion  whose roots c o r r e s p o n d  to z 0 for Zl = 3.0. T h e  f igure shows that z o can be determined var ious ly .  T h e  

charac ter i s t ic  form of func t ions  zo(z 1) with different  selected roots is shown in Fig. 2. (In what  follows we use a 

root  of  1.) 

Figure 3 demons t r a t e s  the  dependences  of the  m a x i m u m  root z o ( z l ) ,  the  relat ive pressure at inf ini ty  N ( z O ,  

a n d  the  gas velocity T(O -- O) in the case of plane mot ion  of  the gas in a porous  med ium.  For each N ~ [0, 1 ], we 

can  f ind  the cor responding  zl ,  a n d  therefore the sy s t em of equations (8) for v -- 0 can be solved for all N. 
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Fig. 4. Dimensionless pressure of a gas f (a) and  dimensionless velocity of 

the gas ~o (b) vs. the space variable x with a relative background pressure  N 

= 0 . 5 0 0 5  for t = 0, 2, 3, 5, 8, 12, 16, and 21 sec (the curves are ordered  f rom 

the bottom upward) (v = 0). f and ~o are dimensionless;  x, m. 
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Fig. 5. Velocity ~o (a) and  dimensionless pressure  f (b) vs. the self-s imilar  

variable (v -- 0). ~o, f, and  0 are dimensionless. 

Using (14), (16), and (21) and  the  expression for ~o when v = 0, we can easily de te rmine  that  the pressure 

of the gas in a porous medium, its velocity, and the self-similar variable are expressed in te rms  of the variable z 

by the formulas  

/ ( z )  = 2 1 / 3 ( y ' ( z )  2 -  zy 2 ( z ) ) ,  ~0(z) = 2 - I / 6 y  2(z) f -1 (z ) ,  

- 1 / 3  Bi (zl) AI (z)  - A i (Zl) B I (z) 
0 ( z )  = - 2 

B i (Zl) A i (z)  - A i (Zl) B i (z) ' 

y (z) = 2 - 1 / 6 ~ N 1 / 2  (B  i (Zl) A i (z) - A i (zl) B i (z)).  

Figure 4 shows plots of the gas pressure and velocity versus the space variable at different  instants for a 

relative background pressure N = 0.5005 (we took 4/(9bc 2) = 1). 

Figure 5a illustrates the velocity ~o as a function of the self-similar variable at N = 0, 5- 10 -4,  0.22, 0.55, 

0.75 (curves 1-5, respectively). The pressure  of the gas for the same N in plane motion is shown in Fig. 5b. In Fig. 

5a, it can be seen that  there are qualitative differences in the behavior of the dependences  of the velocity of gas 

motion in a porous medium for N = 0 and  N > 0. In the case of gas filtration into a vacuum, the velocity of motion 

increases with distance,  ~o --, oo when 0 --> ~ according to the law ~o - 0  + 0 -2. For a nonzero  initial pressure of the 

gas, there is a m a x i m u m  in the velocity of motion. 
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Fig. 6. Behavior of the parameters  of the empirical formula a and b as a 

function of N (v = 0). a, b, and N are dimensionless. 

We can show that  the extremum point of the velocity of gas motion 79(0) corresponds to the sur face  between 

the gas inflowing into the porous medium and  the displaced gas. The  law of conservation of mass for  the  displaced 

gas that initially filled the porous medium is writ ten in the form 

NO 0 = J ( f -  N) dO. 
0 o 

Here  0 o is the self-s imilar  coordinate of the surface between the gases. Integrating this equation by  par ts  and  using 

(8), we obtain 

oO 

/ (0o) 0 o = - f f 'OdO = f (0o) 79 (0o) , 
o 

from which ~,(0 o) = 0o, and  therefore (10) yields d79/dO = 0 when 0 -- 0 o. 

In the case of p lane  symmetry of problem (8) when the relative pressure at infinity N is not very low (for 

N < 0.1), the relat ionship between the gas pressure and the time and space variables can be r ep resen ted  in the 

form of an exponential  dependence on the self-similar  variable O, i.e., there is the formula 

f ( O ) = N + ( 1 - - A D e x p [ - - a ( N )  Ob(N)], O = x  (9b~ t2 )  

For example,  with N - -0 .506 a - -0 .809  and  b = 1.213 (see Fig. 6)i 

In the case v = 1, the equations that  determine z 0 and z I have the form 

l /3  
(23) 

y(z0)=0, 2(zl)__zl. (24) 

Using the initial and  boundary  conditions of problem (8), we obtain a system of equations to de te rmine  the 

constants zo, Zl, Ao, and  DO: 

[B i (Zo) AI (zl) _ Ai (Zo) BI " (Zl)]2 = Zl [B i (Zo) Ai (Zl) _ Ai (Zo) Bi (Zl)12 ' 

[Bi (z O) AI (Zl) -- A i (Zo) B I (zl)12 = z l N 2 - 1 / 3 s r  -2  

2 - L / 6  = 2 - 1 / 6  A 0 =Jr �9 B i ( zO) ,  D O - Jr �9 A i (zO).  

(25) 

From the first equation of system (25) we can determine the dependence z] (z0). Using it, from the second equation 

of (25) we can find z o and  the constants A 0 and  D O for each N. 

Figure 7 shows the dependences N ( z  o) and z] (z0). For each N > 0, the corresponding value of z 0 can be 

found, and therefore problem (8) is also solved for v = 1. 

The  expressions for the pressure and  velocity of the gas are written in the form 

f ( z )  = 3,2 (z) + 2I /3y  ' (z) ([y'  (z) l 2 - zy 2 ( z ) ) / y ( z ) ,  ~o (z) = y2 (z) 0 -2  (z) f - t  ( z ) ,  
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Fig. 7. D e p e n d e n c e s  N(z  o) a n d  ZI(Z 0) fo r  v -- 1. N, zl,  a n d  z0 a r e  

dimensionless.  

Fig. 8. Dependence  ~(0) (the solid lines) for N = 0, 10 -5 ,  0.05, 1.0 (curves 

1-4) and  dependence  f(O) (the dashed  lines) for N = 0, 1.0, 1.62 (curves 1-3) 

in the case v = 1. ~,  f ,  and 0 are dimensionless.  

0 (z) = 2 - 1 / 3  ([y' (z)]2 _ zy2 (z)) /y2 (z) ,  

y (z) = 2 - 1 / 6  ;r [A i (z) B i (zo) - A i (Zo) B i (z) ]. 

(26) 

Figure 8 presents the dependences  ~o(0) and f(O) for different N. 

When z I --, oo the solut ion in the limit descr ibes  the motion of a gas in a porous medium with zero 

background pressure N = 0 [4 ]. As in the plane case, there are qualitative differences in the behavior of the  velocity 

for N = 0 and N > 0. In the first  case,  the velocity of motion increases with distance, ~o --- oo when 0 --- co according 

to the law ~o - 0  + 20 -2,  and  in the second case it decreases to zero. 

Analysis  of Eq. (10) shows that,  for N = 0, the velocity ~ has a min imum,  for 0 < N < N O , where  

N O = 0.05, it has a min imum and  a maximum,  and,  for N > N 0, the velocity ~o decreases monotonically to zero as 

0 increases.  

As in the case v = 0, for  ax i symmetr ic  gas motion, the boundary between the inflowing gas and the displaced 

gas corresponds to the point 0o, where  ~o(00) = 00. 

By means of the m a x i m u m  of the filtration ra te  we can evaluate the time of gas motion through a fixed 

layer  of the porous medium. 

The  obtained analyt ical  and  empirical dependences of the dynamic characteristics of a gas f i l tered in a 

porous medium at a high ra te  can be used to check numerical solutions in mathematical  modeling of gas motion 

with allowance for a quadrat ic  res is tance law and to calculate directly problems of gas filtration. 

The  work was carr ied out with support from the International Science and  Technology Center ,  project 

B23-96. 

N O T A T I O N  

Dimensional quantities: A, constant  used in the boundary condition in the case of axial s y m m e t r y  of the 

problem, kg. m-sec-8/3; c, i so thermal  velocity of sound, m/sec;  K, parameter  in the equation for the gas velocity, 

m2/sec2; P, pressure of the gas,  Pa; P0, background pressure,  Pa; Pl ,  boundary  pressure for x -- 0 in the case of 

plane symmetry  of the problem,  Pa; t, t ime variable, sec; h~and u, vector and scalar velocities of gas motion,  m/sec ;  

x, space  variable,  m; p ,  gas  dens i t y ,  k g / m  3. Dimensionless  quantities: a, p a r a m e t e r  of the o n e - p a r a m e t e r  

t ransformation group; a(N) and  b(A9, coefficients of the approximation expression for the dimensionless pressure  

of the gas; At(z) and Bi(z) ,  Airy functions; B 0 and D o, constants; b, coefficient of resistancc in filtration; D1 and 

D2, total-differentiation operators ;  N, pressure of the gas at infinity; X, X i, infinitesimal operators; y, dependent  
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variable; z, independent variable; z 0 and z, specific values of the variable z that correspond to 0 = 0 and 0 --, oo; 

~v,0, Kronecker symbol; r/, coordinate of the tangential vector field that corresponds to the gas velocity; v, index 

of symmetry of the problem (1, = 0, 1, and 2 for plane, axisymmetric, and spherically symmetric motion of the gas, 

respectively); ~l, coordinate of the tangential vector field that corresponds to the space variable; ~ ,  coordinate of 

the tangential vector field that corresponds to the time variable; 0, self-similar variable; 0o, self-similar coordinate 
of the surface between the gases; g,, dependent variable. 
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