
0.1 Rectangular Domain in Two Dimension

Consider a mixed Poisson problem for the rectangular domain Ω = {(x, y) | 0 ≤
x ≤ Lx, 0 ≤ y ≤ Ly}. Denote the numbers of mesh points in x- and y-directions
by L and M , respectively.

0.1.1 Program Sequence

In order to numerically solve the problem for a rectangle in cartesian coordinates,
one needs to perform the following steps.

1. Create a new folder and copy all files of some example that solves the Poisson
equation in a rectangle into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j)=Q where Q(xi, yj) is
the desired forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed,
and change the lines diriBC(i,j)=Q so that Q = vD(xi, yj) specifies the
desired Dirichlet boundary condition of the problem.

4. Modify the file neumann_boundary.m: change the if-conditions as needed,
and change the lines neuBC(i,j)=Q so that Q = vN(xi, yj) specifies the
desired Neumann boundary condition of the problem.

5. Modify the files x_refine_function.m and y_refine_function.m to intro-
duce necessary mesh refinement. The input parameter in is a vector that
will contain homogeneous mesh points; the output parameter out has to
either equal in (no mesh refinement) or a function that acts on in to con-
centrate/rarify mesh where needed. Each refinement function must be a
monotone increasing function. It is the user’s responsibility to satisfy the
conditions

in(1)=out(1), in(end)=out(end) (1)

in order to preserve the square side lengths.

[Often it is useful to plot out as a function of in using Matlab plot(in, out).

6. Run the solver routine:

[xs ys v relres iter resvec] = rectangle_2d_poisson(

x_max,y_max,num_xs,num_ys,’x_refine_function’,’y_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)

1



where x_max and y_max are the domain sizes Lx, Ly in the x-and y-directions
respectively; num_xs and num_ys are the numbers of mesh points L,M in the
corresponding directions; x_refine_function.m and y_refine_function.m

are the filenames of external Matlab functions for mesh refinement; dirichlet_boundary.m
and neumann_boundary.m are the filenames of external Matlab functions that
generate the Dirichlet and Neumann boundary conditions; forcing.m is the
name of an external Matlab function that generates the forcing term at ev-
ery point of the domain; useiter is an optional parameter (default value 0)
which, if set to a nonzero value, forces the solver to use an iterative method
to solve the sparse linear system.

The normal output of the solver consists of a matrix of approximate solutions
v of the problem at mesh points stored in matrices xs and ys. The solution
is ready for plotting using the routine

surf(xs,ys,v);

When the parameter useiter is set to a nonzero value, an iterative solver
for a linear sparse system is used, and the output values relres, iter and
resvec are the final residual, the number of iterations used, and a vector of
the history of the residuals, respectively.

The solver applies the following rules to determine which boundary condition
to use at each boundary point.

• If at a given boundary point, a Dirichlet boundary condition is specified,
then it is used, and the Neumann boundary condition is ignored (if specified
at all).

• If at a given boundary point, a Neumann boundary condition needs to be
specified, the value provided for diriBC for that point in the file dirichlet_boundary.m
must be set to NaN.

The above rules let the user avoid duplicating if-conditions when the problem
involves a mixture of Dirichlet and Neumann boundary parts.

0.2 Disk Domain in Two Dimensions

In order to numerically solve the problem for a disk of radiusR in polar coordinates,
the following steps need to be taken.

2



0.2.1 Program Sequence

1. Create a new folder and copy all files of some example that solves the Poisson
equation in a disk into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j)=Q where Q(rj, φi) is
the desired forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed,
and change the lines diriBC(i)=Q so that Q = vD(φi) specifies the desired
Dirichlet boundary condition of the problem.

4. Modify the file neumann_boundary.m: change the if-conditions as needed,
and change the lines neuBC(i)=Q so that Q = vN(φi) specifies the desired
Neumann boundary condition of the problem.

5. Modify the files r_refine_function.m and phi_refine_function.m, sim-
ilarly to the case of the rectangle. Each refinement function must be a
monotone increasing function. It is the user’s responsibility to satisfy the
conditions to preserve the domain sizes for both variables. Note that for the
function phi_refine_function.m, one must have

in(1)=out(1)=0, in(end)=out(end)=2π.

6. Run the solver routine:

[xs ys v rs phis relres iter resvec] = polar_2d_poisson(

R_max,num_rs,num_phis,’r_refine_function’,’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)

where R_max is the disk radius R, num_rs and num_phis are the numbers of
mesh points L,M in the radial and angular polar directions; r_refine_function.m
and phi_refine_function.m are the filenames of external Matlab functions
for mesh refinement. For the output values v of the numerical solution, the
routine outputs both the matrices of corresponding polar coordinates rs,
phis and the corresponding Cartesian coordinates xs, ys. The rest of input
and output parameters is identical to those listed in Section 0.1.1.

0.3 Spherical Domain in Three Dimensions

Finally, in order to numerically solve the problem for a sphere of radius R in
spherical coordinates (ρ, θ, φ), one needs to perform the following steps.

3



0.3.1 Program Sequence

1. Create a new folder and copy all files of some example that solves the Poisson
equation in a sphere into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j,k)=Q whereQ(ρk, θj, φi)
is the desired forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed,
and change the lines diriBC(i,j)=Q so that Q = vD(θj, φi) specifies the
desired Dirichlet boundary condition of the problem.

4. Modify the file neumann_boundary.m: change the if-conditions as needed,
and change the lines neuBC(i,j)=Q so that Q = vN(θj, φi) specifies the
desired Neumann boundary condition of the problem.

5. Modify the files r_refine_function.m, phi_refine_function.m, and theta_refine_function.m,
similarly to the case of the rectangle. It remains the user’s responsibility to
satisfy the conditions for each refinement function to preserve the domain
sizes for all three variables. Note that for the function theta_refine_function.m,
one must have

in(1)=out(1)=0, in(end)=out(end)=π,

and for the function phi_refine_function.m, one must have

in(1)=out(1)=0, in(end)=out(end)=2π.

6. Run the spherical solver:

[rs thetas phis v xs ys zs relres iter resvec] = sphere_3d_poisson(

R_max,num_rs,num_thetas,num_phis,

’r_refine_function’,’theta_refine_function.m’, ’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)

where R_max is the sphere radius R. The numerical solution v is output in
the form of a three-dimensional array, together with the corresponding values
of spherical coordinates rs, thetas, phis, and Cartesian coordinates xs, ys,
zs, and is ready for plotting. The rest of the input and output parameters
is analogous to parameters described in Sections 0.1.1 and 0.3.1.

Unlike the two-dimensional solvers, for the spherical solver, the default value
of useiter=1 is used, i.e., an iterative sparse matrix solver is employed by
default.

4


