Conservation Laws of Differential Equations: Origins, Modern Approach, Properties, Systematic Computation, and Applications

Alexey Shevyakov

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, Canada

October 12, 2017

Image: A math a math

Collaborators

- G. Bluman, Brock University, Canada
- S. Anco, Brock University, Canada
- M. Oberlack, TU Darmstadt, Germany
- J.-F. Ganghoffer, LEMTA ENSEM, Université de Lorraine, Nancy, France
- R. Popovych, Wolfgang Pauli Institute / University of Vienna, Austria.

A D > A P > A B > A

・ロト ・回ト ・ヨト ・ヨト

- 1 Local and global conservation laws
- Q General systematic CL computation: non-variational and variational models
- 3 CL computations for physical examples: surfactant dynamics, fluid dynamics
- 4 Variational systems and Noether's 1st theorem
- 5 Conservation laws in three spatial dimensions

A D > A P > A B > A

Notation, etc.

- Independent variables: (x, t), or (t, x, y, z), or $z = (z^1, ..., z^n)$.
- Dependent variables: u(x, t), or generally $v = (v^1(z), ..., v^m(z))$.
- Derivatives:

$$\frac{d}{dt}w(t) = w'(t); \qquad \frac{\partial}{\partial x}u(x,t) = u_x; \qquad \frac{\partial}{\partial z^k}v^p(z) = v_k^p.$$

- All derivatives of order $p: \partial^p v$.
- A differential function:

$$H[v] = H(z, v, \partial v, \ldots, \partial^k v)$$

• A total derivative of a differential function: the chain rule

$$D_i H[v] = \frac{\partial H}{\partial z^i} + \frac{\partial H}{\partial v^{\alpha}} v_i^{\alpha} + \frac{\partial H}{\partial v_j^{\alpha}} v_{ij}^{\alpha} + \dots$$

イロト イヨト イヨト イヨ

• A PDE Example: the KdV (Korteweg-de Vries) equation

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

$$G[u]=u_t+uu_x+u_{xxx}=0.$$

Image: A math a math

• A PDE Example: the KdV (Korteweg-de Vries) equation

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

$$G[u] = u_t + uu_x + u_{xxx} = 0.$$

- $J^{k}(x, t|u)$: the k-th order jet space with coordinates x, t, u, ∂u , ..., $\partial^{k}u$.
- The solution manifold \mathcal{E} in $J^k(x, t|u)$ is defined by the DE(s)+differential consequences to order k:

$$G[u] = 0$$
, $D_x G[u] = 0$, $D_t G[u] = 0$,...

• Statements are often formulated for differential functions defined in $J^{k}(x, t|u)$.

イロト イヨト イヨト イヨト

メロト メポト メヨト メヨト

• System of differential equations (PDE or ODE) G[v] = 0:

$$G^{\sigma}(z,v,\partial v,\ldots,\partial^{q_{\sigma}}v)=0, \quad \sigma=1,\ldots,M.$$

• The fundamental notion -

A local divergence-type conservation law:

A divergence expression

$$\mathrm{D}_i \Phi^i [v] = 0$$

vanishing on solutions of G[v]. Here $\Phi = (\Phi^1[v], \dots, \Phi^n[v])$ is the flux vector.

• System of differential equations (PDE or ODE) G[v] = 0:

$$G^{\sigma}(z,v,\partial v,\ldots,\partial^{q_{\sigma}}v)=0, \quad \sigma=1,\ldots,M.$$

• The fundamental notion -

A local divergence-type conservation law:

A divergence expression

$$\mathrm{D}_i \Phi^i [v] = 0$$

vanishing on solutions of G[v]. Here $\Phi = (\Phi^1[v], \dots, \Phi^n[v])$ is the flux vector.

ODE: A constant of motion (conserved quantity):

$$v = v(t),$$
 $D_t T[v] = 0 \Rightarrow T[v] = const.$

• E.g.
$$v'' + 2vv' = 5$$
:

$$D_t(v' + v^2 - 5t) = 0 \implies v' + v^2 - 5t = C = const$$

イロト イヨト イヨト イヨト

- For PDEs, the meaning of a local conservation law is different: the total amount of "density" is "conserved" in another sense.
- (1+1)-dimensional PDEs: v = v(x, t), only one CL type.

Local form:

$$D_t T[v] + D_x \Psi[v] = 0.$$

Global form:

$$\frac{d}{dt}\int_a^b T[v]\,dt = -\Psi[v]\Big|_a^b.$$

• Multidimensional PDE systems: several different CL types.

A D > A P > A B > A

Conservation principles to derive model DEs.

• Continuity equation - gas/fluid flow:

$$\rho_t + (\rho v)_x = 0, \qquad \rho = \rho(x, t), \qquad v = v(x, t).$$

• Global form:

$$\frac{d}{dt}m = \frac{d}{dt}\int_{x}^{x+\Delta x}\rho\,dx = (\rho v)\Big|_{x}^{x+\Delta x}.$$

Image: A math a math

(1+1)-dimensional linear wave equation:

$$u_{tt} = c^2 u_{xx}, \quad u = u(x,t), \quad c^2 = \tau/
ho, \quad a < x < b \text{ or } -\infty < x < \infty.$$

(1+1)-dimensional linear wave equation:

$$u_{tt} = c^2 u_{xx}, \quad u = u(x,t), \quad c^2 = \tau/\rho, \quad a < x < b \text{ or } -\infty < x < \infty.$$

• A local CL – energy conservation:
$$D_t \left(\frac{\rho u_t^2}{2} + \frac{\tau u_x^2}{2} \right) - D_x(\tau u_t u_x) = 0.$$

• Global form:

$$\frac{d}{dt}E = \frac{d}{dt}\int \left(\frac{\rho u_t^2}{2} + \frac{\tau u_x^2}{2}\right)dx = \tau u_t u_x\Big|_a^b.$$

E.g., for Dirichlet BCs $u|_{x=a,b}$, E = const.

• (3+1)-dimensional PDEs: v = v(t, x, y, z).

• Local form:
$$D_t T[v] + \text{Div } \Psi[v] = 0$$
 \Leftrightarrow $D_i \Phi^i[v] = 0$

• Global form:
$$\left| \frac{d}{dt} \int_{\mathcal{V}} T \, dV = - \oint_{\partial \mathcal{V}} \Psi \cdot d\mathbf{S} \right|$$

• Holds for all solutions $v(t, x, y, z) \in \mathcal{E}$, in some physical domain \mathcal{V} .

• In 3D, CLs of other types on static and moving domains can exist.

Applications

メロト メポト メヨト メヨト

Applications to ODEs

- Constants of motion.
- Reduction of order / integration.

Applications to PDEs

- Rates of change of physical variables; constants of motion.
- Differential constraints (divergence-free or irrotational fields, etc.).
- Analysis of solution behaviour: existence, uniqueness, stability.
- Potentials, stream functions, etc.
- An infinite number of CLs may indicate integrability/linearization.
- Conserved PDEs forms for finite volume/discontinuous Galerkin/special numerical methods.
- Conservation law-preserving numerical methods.
- Numerical method testing.

CLs with no physical content?

メロト メポト メヨト メヨト

Example: (1+1)-dimensional linear wave equation

$$u_{tt} = c^2 u_{xx}, \quad u = u(x, t).$$

Trivial conservation laws:

 Density/flux vanishes on solutions (Type I, vanishing density/flux). For example,

$$D_t(u_{tt}-c^2u_{xx})+D_x\left(2u\left[u_{ttx}-c^2u_{xxx}\right]\right)=0.$$

• Holds as an identity for any u(x, t) (Type II, null divergence). For example,

$$D_t(x+u_x)+D_x(2t-u_t)\equiv 0.$$

• A combination thereof.

• • • • • • • • • • • •

Example: (1+1)-dimensional linear wave equation

$$u_{tt} = c^2 u_{xx}, \quad u = u(x, t).$$

Equivalent conservation laws:

• Differ by a trivial one. For example,

$$D_t(u_t) - D_x(c^2 u_x) = 0$$

and

$$D_t(u_t+x)-D_x(c^2u_x-1)=0$$

describe the same physical quantity.

- Natural to study equivalence classes of CLs.
- Linear space CL(G) of all CLs of a system $G[v] = 0 \rightarrow a$ factor space of equivalence classes.
- It is of interest to determine a basis of CLs in the factor space.

イロト イヨト イヨト イヨ

Example: (1+1)-dimensional linear wave equation

$$u_{tt} = c^2 u_{xx}, \quad u = u(x, t).$$

• Same ideas for multi-dimensional models.

A D > A B > A B >

Characteristic form of a CL

メロト メポト メヨト メヨト

Characteristic form of a CL

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

イロト イヨト イヨト イヨ

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

• Off of solution set, for all v:

$$\mathbf{D}_{i} \Phi^{i}[\mathbf{v}] = \Lambda_{\sigma}[\mathbf{v}] G^{\sigma}[\mathbf{v}] + \Lambda_{\sigma}^{k}[\mathbf{v}] \mathbf{D}_{k} G^{\sigma}[\mathbf{v}] + \dots$$

イロト イヨト イヨト イヨト

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

• Off of solution set, for all v:

$$\mathbf{D}_{i} \Phi^{i}[\mathbf{v}] = \Lambda_{\sigma}[\mathbf{v}] G^{\sigma}[\mathbf{v}] + \Lambda_{\sigma}^{k}[\mathbf{v}] \mathbf{D}_{k} G^{\sigma}[\mathbf{v}] + \dots$$

• An equivalent CL:

$$\mathbf{D}_{i}\tilde{\boldsymbol{\Phi}}^{i}[\boldsymbol{v}] = \tilde{\boldsymbol{\Lambda}}_{\sigma}[\boldsymbol{v}]\boldsymbol{G}^{\sigma}[\boldsymbol{v}].$$

イロト イヨト イヨト イヨト

A characteristic form of a local CL:

$$D_i \Phi^i [v] = \Lambda_{\sigma} [v] G^{\sigma} [v].$$

- $\Phi^{i}[v]$: fluxes.
- $\Lambda_{\sigma}[v]$: multipliers.
- There is "usually" a 1:1 correspondence between sets of (nontrivial) multipliers and the respective (nontrivial) local CLs.

How many local CLs?

メロト メタト メヨト メヨト

• How many (linearly independent, nontrivial) local CLs does a given PDE system have?

・ロン ・回 と ・ ヨン・

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility I: a finite number. For example:

Theorem (Ibragimov, 1985)

For any (1+1)-dimensional even-order scalar evolution equation

$$u_t = F(x, t, u, \partial_x u, \ldots, \partial_x^{2k} u), \qquad u = u(x, t),$$

the flux and the density of local CLs

 $\mathbf{D}_t T[u] + \mathbf{D}_x \Psi[u] = \mathbf{0}$

(up to equivalence) depend only on x, t, u and derivatives of u with respect to x, and the maximal order of a derivative in the CL density T is k.

イロト イヨト イヨト イヨト

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility I: a finite number. For example:

A nonlinear diffusion equation

$$u_t = (u^2 u_x)_x, \qquad u = u(x, t).$$

Two local CLs only:

$$D_t(u) - D_x(u^2u_x) = 0,$$
$$D_t(xu) + D_x\left(\frac{u^3}{3} - xu^2u_x\right) = 0.$$

イロト イヨト イヨト イ
- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility I: a finite number. For example:

Constant-density Navier-Stokes equations

 $\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \mathbf{p} + \nu \Delta \mathbf{u}.$

CLs [Gusyatnikova & Yumaguzhin, 1989]:

- Continuity (generalized): $\nabla \cdot (k(t)\mathbf{u}) = 0$.
- Momentum (generalized): $D_t(f(t)u^1) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.

• Angular momentum: $D_t(zu^2 - yu^3) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.

イロト イヨト イヨト イヨト

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility II: an infinite countable set. E.g., CLs of an integrable equation.

Example: the KdV

$$u_t + uu_x + u_{xxx} = 0,$$
 $u = u(x, t).$

A hierarchy of local CLs:

$$D_{t}(u) + D_{x}\left(\frac{1}{2}u^{2} + u_{xx}\right) = 0,$$

$$D_{t}\left(\frac{1}{2}u^{2}\right) + D_{x}\left(\frac{1}{3}u^{3} + uu_{xx} - \frac{1}{2}u_{x}^{2}\right) = 0,$$

$$D_{t}\left(\frac{1}{6}u^{3} - \frac{1}{2}u_{x}^{2}\right) + D_{x}\left(\frac{1}{8}u^{4} - uu_{x}^{2} + \frac{1}{2}(u^{2}u_{xx} + u_{xx}^{2}) - u_{x}u_{xxx}\right) = 0,$$

$$\vdots$$

イロン イ部ン イヨン イヨ

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- **Possibility III:** an infinite CL family involving arbitrary functions. E.g., linear/linearizable equations, etc.

Example:

- A linear heat equation $u_t = a^2 u_{xx}$, u = u(x, t).
- Local CLs: $\Lambda(x, t)(u_t u_{xx}) = D_t \Theta + D_x \Psi = 0.$
- The multiplier $\Lambda(x, t)$ is any solution of the adjoint linear PDE $\Lambda_t = -a^2 \Lambda_{xx}$.
- E.g., $\Lambda(x,t) = e^{a^2 t} \sin x$, then $D_t \left(e^{a^2 t} u \sin x \right) + D_x \left(a^2 e^{a^2 t} [u \cos x u_x \sin x] \right) = 0$.
- Existence of a "large" CL family is a necessary condition of invertible linearization (e.g., Bluman, Anco & Wolf, 2008).

<ロ> (日) (日) (日) (日) (日)

How to compute CLs?

メロト メタト メヨト メヨト

The idea of the direct construction method

Independent and dependent variables of the problem: $z = (z^1, ..., z^n), v = v(z) = (v^1, ..., v^m).$

Definition

The Euler operator with respect to an arbitrary function v^j :

$$\mathbf{E}_{\mathsf{v}^j} = \frac{\partial}{\partial \mathsf{v}^j} - \mathbf{D}_i \frac{\partial}{\partial \mathsf{v}^j_i} + \dots + (-1)^s \mathbf{D}_{i_1} \dots \mathbf{D}_{i_s} \frac{\partial}{\partial \mathsf{v}^j_{i_1 \dots i_s}} + \dots, \quad j = 1, \dots, m.$$

Theorem

The equations

$$\mathbb{E}_{v^j}F[v] \equiv 0, \quad j = 1, \dots, m$$

hold for arbitrary v(z) if and only if

$$F[v] \equiv D_i \Phi^i$$

for some functions $\Phi^i = \Phi^i[v]$.

イロン イ部ン イヨン イヨ

Given:

- A system of M DEs $G^{\sigma}[v] = 0$, $\sigma = 1, \dots, M$.
- Variables: $z = (z^1, ..., z^n), \quad v = (v^1(z), ..., v^m(z)).$

イロト イヨト イヨト イヨ

Given:

- A system of M DEs $G^{\sigma}[v] = 0$, $\sigma = 1, \dots, M$.
- Variables: $z = (z^1, ..., z^n)$, $v = (v^1(z), ..., v^m(z))$.

The Direct CL Construction Method

- **()** Specify the dependence of multipliers: $\Lambda_{\sigma} = \Lambda_{\sigma}[z, v, \partial v, ...].$
- Solve the set of determining equations E_{νi}(Λ_σ[ν]G^σ[ν]) ≡ 0, j = 1,..., m, for arbitrary ν(z), to find all sets of multipliers.
- Find the corresponding fluxes $\Phi^i[V]$ satisfying the identity

$$\Lambda_{\sigma}[\mathbf{v}]G^{\sigma}[\mathbf{v}] \equiv \mathrm{D}_{i}\Phi^{i}[\mathbf{v}].$$

Solutions, get a local conservation law

$$\mathrm{D}_i \Phi^i [v] = 0.$$

イロト イヨト イヨト イヨト

Consider a nonlinear telegraph system for $v^1 = u(x, t)$, $v^2 = v(x, t)$:

$$G^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$G^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \Lambda_1(x, t, u, v), \quad \Lambda_2 = \Lambda_2(x, t, u, v).$

・ロト ・回ト ・ヨト ・ヨ

Consider a nonlinear telegraph system for $v^1 = u(x, t)$, $v^2 = v(x, t)$:

$$G^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

 $G^{2}[u, v] = u_{t} - v_{x} = 0.$

Multiplier ansatz: $\Lambda_1 = \Lambda_1(x, t, u, v), \quad \Lambda_2 = \Lambda_2(x, t, u, v).$

Determining equations:

$$\begin{split} & \operatorname{E}_{u}\left[\Lambda_{1}(x,t,u,v)(v_{t}-(u^{2}+1)u_{x}-u)+\Lambda_{2}(x,t,u,v)(u_{t}-v_{x})\right]\equiv0, \\ & \operatorname{E}_{v}\left[\Lambda_{1}(x,t,u,v)(v_{t}-(u^{2}+1)u_{x}-u)+\Lambda_{2}(x,t,u,v)(u_{t}-v_{x})\right]\equiv0. \end{split}$$

Euler operators:

$$\begin{split} \mathbf{E}_{u} &= \frac{\partial}{\partial u} - \mathbf{D}_{x} \frac{\partial}{\partial u_{x}} - \mathbf{D}_{t} \frac{\partial}{\partial u_{t}}, \\ \mathbf{E}_{v} &= \frac{\partial}{\partial v} - \mathbf{D}_{x} \frac{\partial}{\partial v_{x}} - \mathbf{D}_{t} \frac{\partial}{\partial v_{t}}. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Consider a nonlinear telegraph system for $v^1 = u(x, t)$, $v^2 = v(x, t)$:

$$G^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

 $G^{2}[u, v] = u_{t} - v_{x} = 0.$

Multiplier ansatz: $\Lambda_1 = \Lambda_1(x, t, u, v), \quad \Lambda_2 = \Lambda_2(x, t, u, v).$

Determining equations:

$$\begin{split} & \mathrm{E}_{u}\left[\Lambda_{1}(x,t,u,v)(v_{t}-(u^{2}+1)u_{x}-u)+\Lambda_{2}(x,t,u,v)(u_{t}-v_{x})\right]\equiv0,\\ & \mathrm{E}_{v}\left[\Lambda_{1}(x,t,u,v)(v_{t}-(u^{2}+1)u_{x}-u)+\Lambda_{2}(x,t,u,v)(u_{t}-v_{x})\right]\equiv0. \end{split}$$

Split determining equations:

$$\begin{split} \Lambda_{2v} - \Lambda_{1u} &= 0, \qquad \Lambda_{2u} - (u^2 + 1)\Lambda_{1v} = 0, \\ \Lambda_{2x} - \Lambda_{1t} - u\Lambda_{1v} &= 0, \qquad (u^2 + 1)\Lambda_{1x} - \phi_t - u\Lambda_{1u} - \Lambda_1 = 0. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Consider a nonlinear telegraph system for $v^1 = u(x, t)$, $v^2 = v(x, t)$:

$$G^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

 $G^{2}[u, v] = u_{t} - v_{x} = 0.$

Multiplier ansatz: $\Lambda_1 = \Lambda_1(x, t, u, v), \quad \Lambda_2 = \Lambda_2(x, t, u, v).$

Solution: five sets of multipliers $(\Lambda_1, \Lambda_2) =$

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Consider a nonlinear telegraph system for $v^1 = u(x, t)$, $v^2 = v(x, t)$:

$$G^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

 $G^{2}[u, v] = u_{t} - v_{x} = 0.$

Multiplier ansatz: $\Lambda_1 = \Lambda_1(x, t, u, v), \quad \Lambda_2 = \Lambda_2(x, t, u, v).$

Resulting five conservation laws:

$$D_t u - D_x v = 0,$$

$$D_t[(x - \frac{1}{2}t^2)u + tv] + D_x[(\frac{1}{2}t^2 - x)v - t(\frac{1}{3}u^3 + u)] = 0,$$

$$D_t[v - tu] + D_x[tv - (\frac{1}{3}u^3 + u)] = 0,$$

$$D_t[e^{x + \frac{1}{2}u^2 + v}] + D_x[-ue^{x + \frac{1}{2}u^2 + v}] = 0,$$

$$D_t[e^{x + \frac{1}{2}u^2 - v}] + D_x[ue^{x + \frac{1}{2}u^2 - v}] = 0.$$

• To obtain further conservation laws, extend the multiplier ansatz...

イロン 不通と 不通と 不通と

Symbolic software for computation of conservation laws

Example of use of the GeM package for Maple for the KdV.

- Use the module: read("d:/gem32_12.mpl"):
- Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t),V(x,t)]);
- Declare the PDEs:

• Generate determining equations:

det_eqs:=gem_conslaw_det_eqs([x,t,U(x,t),V(x,t)]):

• Reduce the overdetermined system:

CL_multipliers:=gem_conslaw_multipliers(); simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);

• Solve determining equations:

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

• Obtain corresponding conservation law fluxes/densities:

gem_get_CL_fluxes(multipliers_sol, method=****);

Computational examples

メロト メタト メヨト メヨト

Surfactants - Applications

- Surfactant molecules adsorb at phase separation interfaces.
- Can form micelles, double layers, etc.

・ロト ・回ト ・ヨト ・

Surfactants - Applications

• Soap bubbles...

<<p>(日)、<</p>

Parameters

- Surfactant concentration $c = c(\mathbf{x}, t)$.
- Flow velocity $\mathbf{u}(\mathbf{x}, t)$.
- Two-phase interface: phase separation surface $\Phi(\mathbf{x}, t) = 0$.
- Unit normal: $\mathbf{n} = -\frac{\nabla \Phi}{|\nabla \Phi|}.$

・ロト ・回ト ・ヨト

Surface gradient

- Surface projection tensor: $p_{ij} = \delta_{ij} n_i n_j$.
- Surface gradient operator: $\nabla^s = \mathbf{p} \cdot \nabla = (\delta_{ij} n_i n_j) \frac{\partial}{\partial x^j}$.
- Surface Laplacian:

$$\Delta^{s}F = (\delta_{ij} - n_{i}n_{j})\frac{\partial}{\partial x^{j}}\left((\delta_{ik} - n_{i}n_{k})\frac{\partial F}{\partial x^{k}}\right)$$

・ロン ・日 ・ ・ ヨン

Governing equations

- Incompressibility condition: $\nabla \cdot \mathbf{u} = 0.$
- Fluid dynamics equations: Euler or Navier-Stokes.
- Interface transport by the flow: $\Phi_t + \mathbf{u} \cdot \nabla \Phi = 0.$
- Surfactant transport equation:

$$c_t + u^i \frac{\partial c}{\partial x^i} - cn_i n_j \frac{\partial u^i}{\partial x^j} - \alpha (\delta_{ij} - n_i n_j) \frac{\partial}{\partial x^j} \left((\delta_{ik} - n_i n_k) \frac{\partial c}{\partial x^k} \right) = 0.$$

・ロン ・日ン ・ヨン・

Fully conserved form?

$$c_t + u^i \frac{\partial c}{\partial x^i} - c n_i n_j \frac{\partial u^i}{\partial x^j} - \alpha (\delta_{ij} - n_i n_j) \frac{\partial}{\partial x^j} \left((\delta_{ik} - n_i n_k) \frac{\partial c}{\partial x^k} \right) = 0.$$

• Can the surfactant transport equation be written in the conserved form?

・ロト ・回ト ・ヨト ・

Governing equations $(\alpha \neq 0)$

$$G^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$G^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$G^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha (\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

・ロン ・回 と ・ ヨン・

Governing equations ($\alpha \neq 0$)

$$G^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$G^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$G^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

Multipliers:

$$\begin{split} \Lambda^{1} &= \Phi \mathcal{F}(\Phi) \left| \nabla \Phi \right|^{-1} \left(\frac{\partial}{\partial x^{j}} \left(c \frac{\partial \Phi}{\partial x^{j}} \right) - c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}} \right), \\ \Lambda^{2} &= -\mathcal{F}(\Phi) \left| \nabla \Phi \right|^{-1} \left(\frac{\partial}{\partial x^{j}} \left(c \frac{\partial \Phi}{\partial x^{j}} \right) - c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}} \right), \\ \Lambda^{3} &= \mathcal{F}(\Phi) \left| \nabla \Phi \right|, \end{split}$$

where $\mathcal{F} = \mathcal{F}(\Phi)$ is an arbitrary sufficiently smooth function.

・ロト ・日 ・ ・ ヨト ・ ヨ

Governing equations ($\alpha \neq 0$)

$$G^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$G^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$G^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

An infinite CL family:

$$\mathrm{D}_{t}\left(c\,\mathcal{F}(\Phi)\left|
abla\Phi\right|
ight)+\mathrm{D}_{i}\left(A^{i}\,\mathcal{F}(\Phi)\left|
abla\Phi\right|
ight)=0,$$

where

$$A^{i} = cu^{i} - \alpha \left(\left(\delta_{ik} - n_{i} n_{k} \right) \frac{\partial c}{\partial x^{k}} \right), \quad i = 1, 2, 3.$$

・ロト ・回ト ・ヨト ・

Euler equations of inviscid fluid flow:

$$abla \cdot \mathbf{u} = \mathbf{0}, \qquad \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \mathbf{p} = \mathbf{0}.$$

・ロト ・回ト ・ヨト

Euler equations of inviscid fluid flow:

$$abla \cdot \mathbf{u} = \mathbf{0}, \qquad \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

CL Multiplier ansatz [Oberlack & C., 2014]:

 Λ_{σ} , $\sigma = 1, 2, 3, 4$, are functions of 45 variables

$$\begin{array}{l} t, x, y, z, \quad u^1, u^2, u^3, p, \quad u^1_y, u^1_z, \quad u^2_x, u^2_y, u^2_z, \quad u^3_x, u^3_y, u^3_z, \quad p_t, p_x, p_y, p_z, \\ u^1_{yy}, u^1_{yz}, u^1_{zz}, \quad u^2_{xx}, u^2_{xy}, u^2_{xz}, u^2_{yy}, u^2_{yz}, u^2_{zz}, \quad u^3_{xx}, u^3_{xy}, u^3_{xz}, u^3_{yy}, u^3_{yz}, u^3_{zz}, \\ p_{tt}, p_{tx}, p_{ty}, p_{tz}, p_{xx}, p_{xy}, p_{xz}, p_{yy}, p_{yz}, p_{zz}. \end{array}$$

イロト イヨト イヨト イ

Euler equations of inviscid fluid flow:

$$abla \cdot \mathbf{u} = \mathbf{0}, \qquad \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

Computed CLs:

- Continuity (generalized): $\nabla \cdot (k(t)\mathbf{u}) = 0$.
- Momentum (generalized): $D_t(f(t)u^1) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.
- Angular momentum: $D_t(zu^2 yu^3) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.
- Kinetic energy: $D_t(K) + ... = 0$, $K = \frac{1}{2} |\mathbf{u}|^2$.
- Helicity: $D_t(h) + ... = 0$, $h = \mathbf{u} \cdot \boldsymbol{\omega}$, $\boldsymbol{\omega} = \operatorname{curl} \mathbf{u}$.
- Linear overdetermined system of 58,273 determining equations on the unknown Λ_{σ} .
- Additional special CLs arise in symmetry-reduced settings.

<ロ> (日) (日) (日) (日) (日)

Global and local conservation laws...

Conservation laws – summary

For a DE system G[v] = 0:

- The solution manifold \mathcal{E} is a geometric object.
- CLs reflect its properties, and are coordinate-independent. In particular,

$$\mathrm{D}_{(z^*)^i}(\Phi^*)^i[v^*] = J \mathrm{D}_i \Phi^i[v] = 0$$

after a change of variables

$$(z^*)^i = f^i(z, v), \qquad i = 1, \dots, n,$$

 $(v^*)^k = g^k(z, v), \qquad k = 1, \dots, m.$

- CLs have a characteristic form: $D_i \Phi^i[v] = \Lambda_{\sigma}[v] G^{\sigma}[v]$.
- CLs can be systematically computed (the direct method and Maple implementation).
- The direct method is complete, within a chosen ansatz.

イロト イヨト イヨト イヨト

Variational systems and Noether's 1st theorem

A D > A P > A B > A

- Local symmetries and local conservation laws of DE systems are closely related.
- A specific well-known relationship: Noether's 1st theorem for variational DE systems.

A D > A P > A B > A

Symmetries of differential equations

• System of differential equations (PDE or ODE) G[v] = 0:

$$G^{\sigma}(z, v, \partial v, \ldots, \partial^{q_{\sigma}} v) = 0, \quad \sigma = 1, \ldots, M.$$

- Independent and dependent variables: $z = (z^1, ..., z^n), v = v(z) = (v^1, ..., v^m).$
- A point symmetry: a change of variables

$$(z^*)^i = f^i(z, v), \quad i = 1, ..., n,$$

 $(v^*)^k = g^k(z, v), \quad k = 1, ..., m$

mapping solutions to solutions.

• A Lie group of point symmetries: a symmetry group with parameter(s) a

$$(z^*)^i = f^i(z, v; a) = z^i + a\xi^i(z, v) + O(a^2), \quad i = 1, \dots, n, (v^*)^k = g^k(z, v; a) = v^k + a\eta^k(z, v) + O(a^2), \quad k = 1, \dots, m.$$

• A corresponding Lie algebra of infinitesimal generators:

$$\mathbf{X} = \xi^{i}(z, \mathbf{v}) \frac{\partial}{\partial z^{i}} + \eta^{k}(z, \mathbf{v}) \frac{\partial}{\partial \mathbf{v}^{k}}.$$

• Evolutionary form of a Lie point symmetry:

$$\begin{split} \hat{\mathbf{X}} &= \zeta^k [\mathbf{v}] \frac{\partial}{\partial v^{\mu}}, \\ (z^{**})^i &= z^i, \qquad \qquad i = 1, \dots, n, \\ (v^{**})^k &= v^k + a \zeta^k [\mathbf{v}] + O(a^2), \quad k = 1, \dots, m. \end{split}$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example 1: translations

A translation

$$x^*=x+C, \quad t^*=t, \quad u^*=u \quad (C\in\mathbb{R})$$

leaves the KdV equation invariant:

$$u_t + uu_x + u_{xxx} = 0 = u_{t^*}^* + u^* u_{x^*}^* + u_{x^*x^*x^*}^*.$$

Example 2: scalings

A scaling

$$x^* = \alpha x, \quad t^* = \alpha^3 t, \quad u^* = \alpha^{-2} u \quad (\alpha \in \mathbb{R})$$

also leaves the KdV equation invariant:

$$u_t + uu_x + u_{xxx} = 0 = \alpha^5 \left(u_{t^*}^* + u^* u_{x^*}^* + u_{x^*x^*x^*}^* \right).$$

イロト イヨト イヨト イ

Action integral

$$J[v] = \int_{\Omega} \mathcal{L}(z, v, \partial v, \ldots, \partial^k v) \, dz.$$

Principle of extremal action

- Variation of $v: v(z) \rightarrow v(z) + \delta v(z); \quad \delta v(z) = \varepsilon w(z); \quad \delta v(z) \big|_{\partial \Omega} = 0.$
- Variation of action: $\delta J \equiv J[v + \varepsilon w] J[v] = o(\varepsilon) \Rightarrow$
- Euler-Lagrange equations:

$$G^{\sigma}[v] = \operatorname{E}_{v^{\sigma}}(\mathcal{L}[v]) = 0, \qquad \sigma = 1, \dots, m.$$

• # equations = # unknowns.

<ロト <回ト < 回ト < 回ト

• Example: Wave equation for u(x, t)

$$\mathcal{L} = P - K = \frac{1}{2}\tau u_x^2 - \frac{1}{2}\rho u_t^2.$$

$$\mathbf{E}_u = \frac{d}{du} - \mathbf{D}_t \frac{d}{du_t} - \mathbf{D}_x \frac{d}{du_x}.$$

$$\mathrm{E}_{u}\mathcal{L}=\rho(\underline{u}_{tt}-c^{2}\underline{u}_{xx})=0, \qquad c^{2}=\tau/\rho.$$

・ロト ・回ト ・ヨト ・ヨ

- Philosophical rather than physical!
- The vast majority of models do not have a variational formulation.
- Mathematically, related to the self-adjointness of linearization (coordinate-dependent!)
- It remains an open problem how to determine whether a given system has a variational formulation.

• • • • • • • • • • • •
• A variational symmetry: preserves the action integral.

Theorem

Given:

() a PDE system G[v] = 0, following from a variational principle;

a local variational symmetry in an evolutionary form:

$$(z^{i})^{*} = z^{i}, \quad (v^{k})^{*} = v^{k} + a \zeta^{k}[v] + O(a^{2}).$$

Then the given DE system has a local conservation law $D_i \Phi^i[v] = 0$. In particular,

$$D_i \Phi^i[v] = \Lambda_{\sigma}[v] R^{\sigma}[v],$$

where the multipliers are the evolutionary symmetry components:

$$\Lambda_{\sigma}[\mathbf{v}] = \zeta^{\sigma}[\mathbf{v}].$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Noether's theorem: example

Example: wave equation

• Equation:
$$u_{tt} = c^2 u_{xx}$$
, $u = u(x, t)$.

• Time translation symmetry:

- Evolutionary symmetry component: $\zeta = -u_t$;
- Multiplier: $\Lambda = \zeta = -u_t$;
- Conservation law (Energy):

$$\Lambda R = -u_t(u_{tt} - c^2 u_{xx}) = -\left[D_t\left(\frac{u_t^2}{2} + c^2 \frac{u_x^2}{2}\right) - D_x\left(c^2 u_t u_x\right)\right] = 0.$$

イロト イヨト イヨト イヨ

Noether's 1st theorem and CL computation?

- The system G[v] = 0 may or may not be variational.
- Lie symmetries can be systematically computed. For variational models, some of them are variational (preserve the action).
- Evolutionary components $\zeta[v]$ of symmetry generators satisfy linearized equations.
- CL multipliers satisfy adjoint linearized equations and extra conditions.
- For a variational system, linearization is self-adjoint.

Then evolutionary variational symmetry components = CL multipliers.

- Noether's theorem is insightful, but not general nor efficient way to compute CLs.
- The direct CL construction method is general; it is a practical shortcut even for variational DE systems.

イロト イロト イヨト イヨト

Different types of CLs in 3D

メロト メポト メヨト メヨト

General classical physical systems in 3D:

- Independent variables: coordinates $x = (x^1, x^2, x^3) \in \Omega$, and possibly time t.
- Dependent variables: $v = v(t, \mathbf{x})$ or v(x); $m \ge 1$ scalars.
- PDEs: $G^{\sigma}[v] = 0, \sigma = 1, ..., M.$

Typical applications:

- Nonlinear mechanics, elasticity, viscoelasticity, plasticity
- Fluid mechanics
- Electromagnetism
- Wave propagation; problems, diffusion, etc.

イロン イ部ン イヨン イヨ

PDE models in three spatial dimensions: examples

Example: Microscopic Maxwell's equations in Gaussian units

div
$$\mathbf{B} = 0$$
, $\mathbf{B}_t + c \operatorname{curl} \mathbf{E} = 0$,
div $\mathbf{E} = 4\pi\rho$, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

・ロト ・回ト ・ヨト ・

Example: Navier-Stokes fluid dynamics equations

 $\begin{aligned} \rho_t + \operatorname{div} \rho \mathbf{u} &= \mathbf{0}, \\ \rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) &= -\operatorname{grad} \, \mathbf{p} + \mu \, \Delta \mathbf{u}. \end{aligned}$

Image: A math a math

PDE models in three spatial dimensions: examples

Example: Ideal magnetohydrodynamics (MHD) equations

$$\rho_t + \operatorname{div} \rho \mathbf{u} = \mathbf{0}, \qquad \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} \, \boldsymbol{p},$$
$$\mathbf{B}_t = \operatorname{curl} (\mathbf{u} \times \mathbf{B}), \qquad \operatorname{div} \mathbf{B} = \mathbf{0}.$$

Applications:

- Time-independent models.
- \bullet Differential constraints, e.g., ${\rm div}~{\bf B}=0,~{\rm curl}~{\bf u}=0...$

・ロト ・回ト ・ヨト ・

1A. Spatial divergence/topological flux conservation laws

• Local form: $\operatorname{Div} \Psi[v] = 0.$

• Global form in \mathcal{V} , $\partial \mathcal{V} = \mathcal{S}$: $\oint_{\mathcal{S}} \Psi[v] \cdot$

$$\oint_{\mathcal{S}} \Psi[v] \cdot d\mathbf{S}\big|_{\mathcal{E}} = 0.$$
 (Gauss thm.)

• Global form when $\partial \mathcal{V} = \mathcal{S}_1 \cup \mathcal{S}_2$:

$$\oint_{\mathcal{S}_1} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S} = \oint_{\mathcal{S}_2} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S}.$$

1A. Spatial divergence/topological flux conservation laws

• Local form: $\operatorname{Div} \Psi[v] = 0$.

• Global form in \mathcal{V} , $\partial \mathcal{V} = \mathcal{S}$:

$$\oint_{\mathcal{S}} \Psi[v] \cdot d\mathbf{S} \big|_{\mathcal{E}} = 0.$$
 (Gauss thm.)

• Global form when $\partial \mathcal{V} = \mathcal{S}_1 \cup \mathcal{S}_2$:

$$\oint_{\mathcal{S}_1} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S} = \oint_{\mathcal{S}_2} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S}.$$

Examples:

- Incompressible flow: $\operatorname{div} \mathbf{u} = \mathbf{0}$.
- Absence of magnetic sources: $\operatorname{div} \mathbf{B} = \mathbf{0}$.

<ロト </p>

1B. Spatial curl/topological circulation conservation laws

• Local form: $|\operatorname{Curl} \Psi[v]|_{\mathcal{E}} = 0.$

• Global form in \mathcal{S} , $\partial \mathcal{S} = \mathcal{C}$:

$$\int_{\mathcal{C}} \Psi[v] \cdot d\ell = 0.$$

• Global form, $\partial S = C_1 \cup C_2$:

$$\oint_{\mathcal{C}_1} \Psi[v]|_{\mathcal{E}} \cdot d\ell = \oint_{\mathcal{C}_2} \Psi[v]|_{\mathcal{E}} \cdot d\ell.$$

イロト イヨト イヨト イ

1B. Spatial curl/topological circulation conservation laws

• Local form: $\operatorname{Curl} \Psi[v]|_{\mathcal{E}} = 0.$

• Global form in
$$\mathcal{S}$$
, $\partial \mathcal{S} = \mathcal{C}$

$$\int_{\mathcal{C}} \Psi[v] \cdot d\ell = 0.$$

• Global form, $\partial \mathcal{S} = \mathcal{C}_1 \cup \mathcal{C}_2$:

$$\oint_{\mathcal{C}_1} \Psi[v]|_{\mathcal{E}} \cdot d\ell = \oint_{\mathcal{C}_2} \Psi[v]|_{\mathcal{E}} \cdot d\ell.$$

Examples:

- Irrotational flow: $\operatorname{curl} \mathbf{u} = \mathbf{0}$.
- Equilibrium MHD-magnetic equation: $\operatorname{curl}\left(\mathbf{u}\times\mathbf{B}\right)=0$
 - \Rightarrow circulation condition:

$$orall \mathcal{S} \subset \Omega, \quad \int_{\partial \mathcal{S}} (\mathbf{u} imes \mathbf{B}) \cdot d\boldsymbol{\ell} = 0.$$

2A. Volumetric conservation laws:

• A global volumetric conservation law of a given 3D PDE model, for $\mathcal{V} \subset \Omega$:

$$\frac{d}{dt}\int_{\mathcal{V}} T\,dV = -\oint_{\partial\mathcal{V}} \Psi \cdot d\mathbf{S},$$

holding for all solutions $v(t, \mathbf{x}) \in \mathcal{E}$.

• Local formulation: a continuity equation

$$D_t T[v] + \operatorname{Div} \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Scalar conserved density: T = T[v], vector spatial flux: $\Psi = \Psi[v]$.

Image: A math a math

2A. Volumetric conservation laws:

• A global volumetric conservation law of a given 3D PDE model, for $\mathcal{V}\subset \Omega:$

$$\frac{d}{dt}\int_{\mathcal{V}} T\,dV = -\oint_{\partial\mathcal{V}} \Psi \cdot d\mathbf{S},$$

holding for all solutions $v(t, \mathbf{x}) \in \mathcal{E}$.

• Physical meaning: the rate of change of the volume quantity

$$\int_{V} T[v] dV$$

is balanced by the surface flux

$$\oint_{\partial \mathcal{V}} \Psi[v] \cdot d\mathbf{S}.$$

Image: A mathematical states and a mathem

Example: Microscopic Maxwell's equations in Gaussian units

$$\operatorname{div} \mathbf{B} = \mathbf{0}, \qquad \mathbf{B}_t + c \operatorname{curl} \mathbf{E} = \mathbf{0},$$

div
$$\mathbf{E} = 4\pi\rho$$
, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

Conservation of electromagnetic energy:

 $\frac{1}{2}\partial_t \left(|\mathbf{E}|^2 + |\mathbf{B}|^2 \right) + c \operatorname{div} \left(\mathbf{E} \times \mathbf{B} \right) = 0.$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2B. Surface-flux conservation laws:

• A global surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{T}\cdot d\mathbf{S}=-\oint_{\partial\mathcal{S}}\boldsymbol{\Psi}\cdot d\boldsymbol{\ell},\qquad \boldsymbol{\nu}\in\mathcal{E}.$$

Local formulation: a vector PDE

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Curl} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

- $\mathcal{S} \subseteq \Omega$ is a fixed bounded surface.
- Vector conserved flux density: $\mathbf{T} = \mathbf{T}[v]$; vector spatial circulation flux: $\Psi = \Psi[v]$.
- Local form: three related scalar divergence-type CLs.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2B. Surface-flux conservation laws:

• A global surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{T}\cdot d\mathbf{S}=-\oint_{\partial\mathcal{S}}\boldsymbol{\Psi}\cdot d\boldsymbol{\ell},\qquad \boldsymbol{\nu}\in\mathcal{E}.$$

• Local formulation: a vector PDE

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Curl} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Physical meaning: rate of change of the surface quantity

$$\int_{\mathcal{S}} \mathbf{T}[v] \cdot d\mathbf{S}$$

is balanced by the circulation

$$\oint_{\partial S} \Psi[v] \cdot d\ell.$$

Image: A math a math

Example: microscopic Maxwell's equations in Gaussian units

div
$$\mathbf{B} = 0$$
, $\mathbf{B}_t + c \operatorname{curl} \mathbf{E} = 0$,
div $\mathbf{E} = 4\pi\rho$, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

Magnetic flux conservation: a global surface-flux conservation law (Faraday's law)

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{B}\cdot d\mathbf{S}=-c\oint_{\partial\mathcal{S}}\mathbf{E}\cdot d\ell.$$

Image: A math a math

Example: ideal magnetohydrodynamics (MHD) equations

$$\rho_t + \operatorname{div} \rho \mathbf{u} = \mathbf{0},$$

$$\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} \boldsymbol{\rho},$$

$$\operatorname{div} \mathbf{B} = \mathbf{0},$$

$$\mathbf{B}_t = \operatorname{curl} (\mathbf{u} \times \mathbf{B}).$$

Conserved flux density, spatial circulation flux:

$$T = B, \qquad \Psi = B \times u.$$

The global form of the surface-flux conservation law

$$rac{d}{dt}\int_{\mathcal{S}} \mathbf{B}\cdot d\mathbf{S} = -\oint_{\partial\mathcal{S}} (\mathbf{B} imes \mathbf{u})\cdot d\boldsymbol{\ell}$$

describes the time evolution of the total magnetic flux through a given fixed surface S.

• A similar CL holds for non-ideal (resistive, viscous) plasmas.

A D > A B > A B >

2C. Circulatory conservation laws:

• A global circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{T}\cdot d\boldsymbol{\ell} = -\Psi\big|_{\partial\mathcal{C}}, \qquad \boldsymbol{v}\in\mathcal{E}.$$

• Local local circulatory conservation law:

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Grad} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

- $\mathcal{C} \subseteq \Omega$ is a fixed simple curve.
- Vector conserved circulation density: T = T[ν]; vector spatial boundary flow: Ψ = Ψ[ν].
- Local form: three related scalar divergence-type CLs.

2C. Circulatory conservation laws:

• A global circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{T}\cdot d\boldsymbol{\ell} = -\Psi\big|_{\partial\mathcal{C}}, \qquad \boldsymbol{v}\in\mathcal{E}.$$

• Local local circulatory conservation law:

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Grad} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Physical meaning: rate of change of the line integral quantity

$$\int_{\mathcal{C}} \mathbf{T} \cdot d\boldsymbol{\ell}$$

is balanced by the flow through the ends of the curve.

イロト イヨト イヨト イヨ

Example: irrotational barotropic gas flow.

$$\begin{split} \rho_t + \operatorname{div}(\rho \mathbf{u}) &= \mathbf{0}, \\ \mathbf{u}_t + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \operatorname{grad} \, f = \mathbf{0}, \qquad f = f_{\operatorname{bar}} = \frac{|\mathbf{u}|^2}{2} + \int \frac{p'(\rho)}{\rho} \, d\rho. \end{split}$$

- Irrotational: $\operatorname{curl} \mathbf{u} = \mathbf{0}$.
- Barotropic: $p = p(\rho)$, \Rightarrow $\mathbf{u}_t + \text{grad } f = 0$.
- Circulatory conservation law over an arbitrary static curve \mathcal{C} :

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{u}\cdot d\boldsymbol{\ell}=-f|_{\partial\mathcal{C}}.$$

• For closed curves, $\partial C = \emptyset$:

$$\frac{d}{dt}\oint_{\mathcal{C}}\mathbf{u}\cdot d\boldsymbol{\ell}=0,$$

conservation of a global velocity circulation around a static closed path.

イロト イヨト イヨト イヨ

CLs on moving domains

メロト メタト メヨト メヨト

- Flow velocity: $\mathbf{u}(t, \mathbf{x})$.
- A moving material domain consists of the same material points.

Image: A math a math

Moving volumetric conservation laws:

• A moving volumetric conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}T[\mathbf{u},v]\,dV=-\oint_{\partial\mathcal{V}(t)}\Upsilon[\mathbf{u},v]\cdot d\mathbf{S},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a volume $\mathcal{V}(t) \in \Omega$ transported by the flow.

Local formulation:

• Leibniz's rule for moving domains:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}T[\mathbf{u},v]\,dV = \int_{\mathcal{V}(t)}D_t\,T[\mathbf{u},v]\,dV + \oint_{\partial\mathcal{V}(t)}T[\mathbf{u},v]\,\mathbf{u}\cdot d\mathbf{S}$$

• Local form:

$$D_t T[\mathbf{u}, v] + \text{Div} (\Upsilon[\mathbf{u}, v] + T[\mathbf{u}, v]\mathbf{u}) = 0.$$

イロン イ部ン イヨン イヨ

Moving volumetric CL example: helicity

• Constant-density fluid flow:

div
$$\mathbf{u} = \mathbf{0}$$
,
 $\mathbf{u}_t + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \operatorname{grad} f = \mathbf{0}$, $f = \frac{|\mathbf{u}|^2}{2} + \frac{p}{q}$

- The fluid helicity: $h \equiv \mathbf{u} \cdot \boldsymbol{\omega}$.
- Helicity dynamics equation: $h_t + \operatorname{div} (\boldsymbol{\omega} \cdot \operatorname{grad} f + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0.$
- Moving volumetric CL, local form:

$$D_t T[\mathbf{u}, v] + \operatorname{Div} \left(\Upsilon[\mathbf{u}, v] + T[\mathbf{u}, v] \mathbf{u} \right) = 0, \qquad v \in \mathcal{E}.$$

$$T = h = \mathbf{u} \cdot \boldsymbol{\omega}, \qquad \mathbf{\Upsilon} = (f - |\mathbf{u}|^2) \boldsymbol{\omega}.$$

• Global form:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}h\,dV=-\oint_{\partial\mathcal{V}(t)}(f-|\mathbf{u}|^2)\,\boldsymbol{\omega}\cdot d\mathbf{S}.$$

・ロト ・回ト ・ヨト

Material conservation laws

• A material conservation law: a moving volumetric CL with a vanishing spatial flux, $\Upsilon[\mathbf{u}, \mathbf{v}]|_{\mathcal{E}} = 0$. of a given 3D PDE model, for $\mathcal{V} \subset \Omega$:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}T[\mathbf{u},\mathbf{v}]\,dV=-\oint_{\partial\mathcal{V}(t)}\Upsilon[\mathbf{u},\mathbf{v}]\cdot d\mathbf{S}=0.$$

• Local formulation:

$$D_t T[\mathbf{u}, v] + \operatorname{Div}(T[\mathbf{u}, v]\mathbf{u}) = 0.$$

• A well-known expression for incompressible flows $\operatorname{div} \mathbf{u} = \mathbf{0}$:

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} T[\mathbf{u}, \mathbf{v}] = \mathbf{0}, \right| \qquad \frac{\mathrm{d}}{\mathrm{d}t} \equiv D_t + \mathbf{u} \cdot \mathrm{Grad}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Material conservation laws: example

The continuity equation in gas/fluid dynamics:

Conservation of mass in a moving material domain :

$$\frac{d}{dt}\int_{\mathcal{V}(t)}\rho\,dV=0.$$

 $+ \rho \mathbf{g}.$

Image: A math a math

- In a similar way, moving surface-flux and moving circulatory CLs in material domains arise.
- Material CLs arise in a similar manner.

A D > A B > A B >

CLs in 3D: overview

メロト メタト メヨト メヨト

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.
- Common framework, clear physical meaning.
- Each kind is locally given by divergence expression(s) \Rightarrow systematic computation.
- Physical examples are readily available.

Talk summary

メロト メロト メヨト メヨト

• CLs are useful in physics, analysis, and numerical simulations.

*ロト *個ト *注ト *注

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms. Local forms are given by one or more divergence expressions.

・ロト ・回ト ・ヨト ・
- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms. Local forms are given by one or more divergence expressions.
- More than one kind of CLs exist, with different physical meaning. In 3D, there are 8 physically different kinds of CLs.

< □ > < 同 > < 回 > < Ξ > < Ξ

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms. Local forms are given by one or more divergence expressions.
- More than one kind of CLs exist, with different physical meaning. In 3D, there are 8 physically different kinds of CLs.
- CLs are coordinate-independent; they can be obtained systematically through the Direct construction method.

< ロ > < 同 > < 三 > < 三

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms. Local forms are given by one or more divergence expressions.
- More than one kind of CLs exist, with different physical meaning. In 3D, there are 8 physically different kinds of CLs.
- CLs are coordinate-independent; they can be obtained systematically through the Direct construction method.
- Symbolic software for such computations exists.

< □ > < 同 > < 回 > < Ξ > < Ξ

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms. Local forms are given by one or more divergence expressions.
- More than one kind of CLs exist, with different physical meaning. In 3D, there are 8 physically different kinds of CLs.
- CLs are coordinate-independent; they can be obtained systematically through the Direct construction method.
- Symbolic software for such computations exists.
- For variational models, Noether's theorem gives useful insights in symmetry-CL relations. These relations are, however, known in a more general setting.

< ロ > < 同 > < 三 > < 三

We did not discuss:

- Multiple computational aspects; multiplier dependencies; singular multipliers; etc.
- CL triviality and equivalence questions.
- 2nd Noether's theorem.
- Useful tricks and techniques to get CLs "cheap".
- Higher-order & nonlocal symmetries. Nonlocal CLs.
- Integrability, linearization,

A D > A P > A B > A

Some references

Olver, P. (1993)

Applications of Lie Groups to Differential Equations. Springer-Verlag.

Bluman, G., Cheviakov, A., and Anco, S. (2010)

Applications of Symmetry Methods to Partial Differential Equations. Springer.

Anco, S. and Cheviakov, A. (2017)

On different types of global and local conservation laws for partial differential equations. I: Three spatial dimensions. Preprint.

Cheviakov, A. (2004–now)

GeM for Maple: a symmetry & conservation law symbolic computation package. http://math.usask.ca/~shevyakov/gem/

Anco, S. (2017)

On the incompleteness of Ibragimov's conservation law theorem and its equivalence to a standard formula using symmetries and adjoint-symmetries. Symmetry 9 (3).

Thank you for your attention!

< □ > < 同 > < 回 > < Ξ > < Ξ