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Notation, etc.

Independent variables: (x , t), or (t, x , y , z), or z = (z1, ..., zn).

Dependent variables: u(x , t), or generally v = (v 1(z), ..., v m(z)).

Derivatives:

d

dt
w(t) = w ′(t);

∂

∂x
u(x , t) = ux ;

∂

∂zk
v p(z) = v p

k .

All derivatives of order p: ∂pv .

A differential function:
H[v ] = H(z , v , ∂v , . . . , ∂k v)

A total derivative of a differential function: the chain rule

Di H[v ] =
∂H

∂z i
+

∂H

∂vα
vαi +

∂H

∂vαj
vαij + ....
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Notation, etc.

A PDE Example: the KdV (Korteweg-de Vries) equation

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0

for the dimensionless fluid depth u = u(x , t) of long surface waves on shallow water:

G [u] = ut + uux + uxxx = 0.

h(x,t) ~ u(x,t)  

x 
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A PDE Example: the KdV (Korteweg-de Vries) equation

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0

for the dimensionless fluid depth u = u(x , t) of long surface waves on shallow water:

G [u] = ut + uux + uxxx = 0.

Jk (x , t|u): the k-th order jet space with coordinates x , t, u, ∂u, ..., ∂k u.

The solution manifold E in Jk (x , t|u) is defined by the DE(s)+differential
consequences to order k:

G [u] = 0, Dx G [u] = 0, DtG [u] = 0, ...

Statements are often formulated for differential functions defined in Jk (x , t|u).
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Local and global conservation laws
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Local and global conservation laws

System of differential equations (PDE or ODE) G [v ] = 0:

Gσ(z , v , ∂v , . . . , ∂qσ v) = 0, σ = 1, . . . ,M.

The fundamental notion –

A local divergence-type conservation law:

A divergence expression

Di Φ
i [v ] = 0

vanishing on solutions of G [v ]. Here Φ = (Φ1[v ], . . . ,Φn[v ]) is the flux vector.
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Gσ(z , v , ∂v , . . . , ∂qσ v) = 0, σ = 1, . . . ,M.

The fundamental notion –

A local divergence-type conservation law:

A divergence expression

Di Φ
i [v ] = 0

vanishing on solutions of G [v ]. Here Φ = (Φ1[v ], . . . ,Φn[v ]) is the flux vector.

ODE: A constant of motion (conserved quantity):

v = v(t), DtT [v ] = 0 ⇒ T [v ] = const.

E.g. v ′′ + 2vv ′ = 5:

Dt(v ′ + v 2 − 5t) = 0 ⇒ v ′ + v 2 − 5t = C = const.
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Local and global conservation laws

For PDEs, the meaning of a local conservation law is different: the total amount of
“density” is “conserved” in another sense.

(1+1)-dimensional PDEs: v = v(x , t), only one CL type.

Local form:
DtT [v ] + Dx Ψ[v ] = 0.

Global form:

d

dt

∫ b

a

T [v ] dt = −Ψ[v ]
∣∣∣b

a
.

Multidimensional PDE systems: several different CL types.
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Local and global conservation laws

Conservation principles to derive model DEs.

Continuity equation – gas/fluid flow:

ρt + (ρv)x = 0, ρ = ρ(x , t), v = v(x , t).

x x + xA

Q(x,t) Q(x + x,t)

x direction

Global form:
d

dt
m =

d

dt

∫ x+∆x

x

ρ dx = (ρv)
∣∣∣x+∆x

x
.
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Local and global conservation laws

(1+1)-dimensional linear wave equation:

utt = c2uxx , u = u(x , t), c2 = τ/ρ, a < x < b or −∞ < x <∞.

x 

u(x,t) 

a b
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Local and global conservation laws

(1+1)-dimensional linear wave equation:

utt = c2uxx , u = u(x , t), c2 = τ/ρ, a < x < b or −∞ < x <∞.

x 

u(x,t) 

a b

A local CL – energy conservation: Dt

(
ρu2

t

2
+
τu2

x

2

)
−Dx (τutux ) = 0.

Global form:
d

dt
E =

d

dt

∫ (
ρu2

t

2
+
τu2

x

2

)
dx = τutux

∣∣∣b
a
.

E.g., for Dirichlet BCs u|x=a,b, E = const.
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Local and global conservation laws

(3+1)-dimensional PDEs: v = v(t, x , y , z).

Local form: DtT [v ] + DivΨ[v ] = 0 ⇔ Di Φ
i [v ] = 0

Global form:
d

dt

∫
V

T dV = −
∮
∂V

Ψ · dS

Holds for all solutions v(t, x , y , z) ∈ E , in some physical domain V.

 

n 

 

T 

In 3D, CLs of other types on static and moving domains can exist.
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Applications
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Applications of Conservation Laws

Applications to ODEs

Constants of motion.

Reduction of order / integration.
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Applications of Conservation Laws

Applications to PDEs

Rates of change of physical variables; constants of motion.

Differential constraints (divergence-free or irrotational fields, etc.).

Analysis of solution behaviour: existence, uniqueness, stability.

Potentials, stream functions, etc.

An infinite number of CLs may indicate integrability/linearization.

Conserved PDEs forms for finite volume/discontinuous Galerkin/special numerical
methods.

Conservation law-preserving numerical methods.

Numerical method testing.
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Applications of Conservation Laws

 

A COMSOL example 
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CLs with no physical content?
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Trivial and equivalent local conservation laws

Example: (1+1)-dimensional linear wave equation

utt = c2uxx , u = u(x , t).

Trivial conservation laws:

Density/flux vanishes on solutions (Type I, vanishing density/flux).
For example,

Dt(utt − c2uxx ) + Dx

(
2u [uttx − c2uxxx ]

)
= 0.

Holds as an identity for any u(x , t) (Type II, null divergence).
For example,

Dt(x + ux ) + Dx (2t − ut) ≡ 0.

A combination thereof.
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Trivial and equivalent local conservation laws

Example: (1+1)-dimensional linear wave equation

utt = c2uxx , u = u(x , t).

Equivalent conservation laws:

Differ by a trivial one.
For example,

Dt(ut)−Dx (c2ux ) = 0

and
Dt(ut + x)−Dx (c2ux − 1) = 0

describe the same physical quantity.

Natural to study equivalence classes of CLs.

Linear space CL(G) of all CLs of a system G [v ] = 0 → a factor space of equivalence
classes.

It is of interest to determine a basis of CLs in the factor space.
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Trivial and equivalent local conservation laws

Example: (1+1)-dimensional linear wave equation

utt = c2uxx , u = u(x , t).

Same ideas for multi-dimensional models.
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Characteristic form of a CL
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Characteristic form of a CL

What is an “algebraic handle” to compute divergence-type CLs

Di Φ
i [v ] = 0

of a DE system Gσ[v ] = 0, σ = 1, . . . ,M?

Hadamard lemma for differential functions

A smooth differential function Q[v ] vanishes on solutions of a totally nondegenerate PDE
system Gσ[v ] = 0 if and only if it has the form, for all v ,

Q[v ] = Λσ[v ]Gσ[v ] + Λk
σ[v ]Dk Gσ[v ] + . . . .

Off of solution set, for all v :

Di Φ
i [v ] = Λσ[v ]Gσ[v ] + Λk

σ[v ]Dk Gσ[v ] + . . . .

An equivalent CL:
Di Φ̃

i [v ] = Λ̃σ[v ]Gσ[v ].
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Characteristic form of a CL

A characteristic form of a local CL:

Di Φ
i [v ] = Λσ[v ]Gσ[v ].

Φi [v ]: fluxes.

Λσ[v ]: multipliers.

There is “usually” a 1:1 correspondence between sets of (nontrivial) multipliers and
the respective (nontrivial) local CLs.
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How many local CLs?
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

Possibility I: a finite number. For example:

Theorem (Ibragimov, 1985)

For any (1 + 1)-dimensional even-order scalar evolution equation

ut = F (x , t, u, ∂x u, . . . , ∂2k
x u), u = u(x , t),

the flux and the density of local CLs

DtT [u] + Dx Ψ[u] = 0

(up to equivalence) depend only on x , t, u and derivatives of u with respect to x, and the
maximal order of a derivative in the CL density T is k.
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

Possibility I: a finite number. For example:

A nonlinear diffusion equation

ut = (u2ux )x , u = u(x , t).

Two local CLs only:
Dt(u)−Dx (u2ux ) = 0,

Dt(xu) + Dx

(
u3

3
− xu2ux

)
= 0.
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

Possibility I: a finite number. For example:

Constant-density Navier-Stokes equations

ρ = const, divu = 0, ut + u · ∇u = − grad p + ν ∆u.

CLs [Gusyatnikova & Yumaguzhin, 1989]:

Continuity (generalized): ∇ · (k(t) u) = 0.

Momentum (generalized): Dt(f (t)u1) + Dx (. . .) + Dy (. . .) + Dz (. . .) = 0;
same for y , z .

Angular momentum: Dt(zu2 − yu3) + Dx (. . .) + Dy (. . .) + Dz (. . .) = 0;
same for y , z .
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

Possibility II: an infinite countable set. E.g., CLs of an integrable equation.

Example: the KdV

ut + uux + uxxx = 0, u = u(x , t).

A hierarchy of local CLs:

Dt(u) + Dx

(
1
2
u2 + uxx

)
= 0,

Dt

(
1
2
u2
)

+ Dx

(
1
3
u3 + uuxx − 1

2
u2

x

)
= 0,

Dt

(
1
6
u3 − 1

2
u2

x

)
+ Dx

(
1
8
u4 − uu2

x + 1
2
(u2uxx + u2

xx )− ux uxxx

)
= 0,

...
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How many local CLs?

How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

Possibility III: an infinite CL family involving arbitrary functions.
E.g., linear/linearizable equations, etc.

Example:

A linear heat equation ut = a2uxx , u = u(x , t).

Local CLs: Λ(x , t)(ut − uxx ) = DtΘ + Dx Ψ = 0.

The multiplier Λ(x , t) is any solution of the adjoint linear PDE Λt = −a2Λxx .

E.g., Λ(x , t) = ea2t sin x , then Dt

(
ea2t u sin x

)
+Dx

(
a2ea2t [u cos x − ux sin x ]

)
= 0.

Existence of a “large” CL family is a necessary condition of invertible linearization
(e.g., Bluman, Anco & Wolf, 2008).
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How to compute CLs?
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The idea of the direct construction method

Independent and dependent variables of the problem:
z = (z1, ..., zn), v = v(z) = (v 1, ..., v m).

Definition

The Euler operator with respect to an arbitrary function v j :

Ev j =
∂

∂v j
−Di

∂

∂v j
i

+ · · ·+ (−1)sDi1 . . .Dis

∂

∂v j
i1...is

+ · · · , j = 1, . . . ,m.

Theorem

The equations
Ev j F [v ] ≡ 0, j = 1, . . . ,m

hold for arbitrary v(z) if and only if

F [v ] ≡ Di Φ
i

for some functions Φi = Φi [v ].
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The direct construction method

Given:

A system of M DEs Gσ[v ] = 0, σ = 1, . . . ,M.

Variables: z = (z1, ..., zn), v = (v 1(z), ..., v m(z)).

The Direct CL Construction Method

1 Specify the dependence of multipliers: Λσ = Λσ[z , v , ∂v , ...].

2 Solve the set of determining equations Ev j (Λσ[v ]Gσ[v ]) ≡ 0, j = 1, . . . ,m, for
arbitrary v(z), to find all sets of multipliers.

3 Find the corresponding fluxes Φi [V ] satisfying the identity

Λσ[v ]Gσ[v ] ≡ Di Φ
i [v ].

4 For each set of fluxes, on solutions, get a local conservation law

Di Φ
i [v ] = 0.
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A detailed example

Consider a nonlinear telegraph system for v 1 = u(x , t), v 2 = v(x , t):

G 1[u, v ] = vt − (u2 + 1)ux − u = 0,
G 2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = Λ1(x , t, u, v), Λ2 = Λ2(x , t, u, v).
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A detailed example

Consider a nonlinear telegraph system for v 1 = u(x , t), v 2 = v(x , t):

G 1[u, v ] = vt − (u2 + 1)ux − u = 0,
G 2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = Λ1(x , t, u, v), Λ2 = Λ2(x , t, u, v).

Determining equations:

Eu

[
Λ1(x , t, u, v)(vt − (u2 + 1)ux − u) + Λ2(x , t, u, v)(ut − vx )

]
≡ 0,

Ev

[
Λ1(x , t, u, v)(vt − (u2 + 1)ux − u) + Λ2(x , t, u, v)(ut − vx )

]
≡ 0.

Euler operators:

Eu =
∂

∂u
−Dx

∂

∂ux
−Dt

∂

∂ut
,

Ev =
∂

∂v
−Dx

∂

∂vx
−Dt

∂

∂vt
.
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A detailed example

Consider a nonlinear telegraph system for v 1 = u(x , t), v 2 = v(x , t):

G 1[u, v ] = vt − (u2 + 1)ux − u = 0,
G 2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = Λ1(x , t, u, v), Λ2 = Λ2(x , t, u, v).

Determining equations:

Eu

[
Λ1(x , t, u, v)(vt − (u2 + 1)ux − u) + Λ2(x , t, u, v)(ut − vx )

]
≡ 0,

Ev

[
Λ1(x , t, u, v)(vt − (u2 + 1)ux − u) + Λ2(x , t, u, v)(ut − vx )

]
≡ 0.

Split determining equations:

Λ2v − Λ1u = 0, Λ2u − (u2 + 1)Λ1v = 0,

Λ2x − Λ1t − uΛ1v = 0, (u2 + 1)Λ1x − φt − uΛ1u − Λ1 = 0.
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A detailed example

Consider a nonlinear telegraph system for v 1 = u(x , t), v 2 = v(x , t):

G 1[u, v ] = vt − (u2 + 1)ux − u = 0,
G 2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = Λ1(x , t, u, v), Λ2 = Λ2(x , t, u, v).

Solution: five sets of multipliers (Λ1,Λ2) =

0 1

t x − 1
2
t2

1 −t

ex+ 1
2

u2+v uex+ 1
2

u2+v

ex+ 1
2

u2−v −uex+ 1
2

u2−v
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A detailed example

Consider a nonlinear telegraph system for v 1 = u(x , t), v 2 = v(x , t):

G 1[u, v ] = vt − (u2 + 1)ux − u = 0,
G 2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = Λ1(x , t, u, v), Λ2 = Λ2(x , t, u, v).

Resulting five conservation laws:

Dtu −Dx v = 0,

Dt [(x − 1
2
t2)u + tv ] + Dx [( 1

2
t2 − x)v − t( 1

3
u3 + u)] = 0,

Dt [v − tu] + Dx [tv − ( 1
3
u3 + u)] = 0,

Dt [ex+ 1
2

u2+v ] + Dx [−uex+ 1
2

u2+v ] = 0,

Dt [ex+ 1
2

u2−v ] + Dx [uex+ 1
2

u2−v ] = 0.

To obtain further conservation laws, extend the multiplier ansatz...
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Symbolic software for computation of conservation laws

Example of use of the GeM package for Maple for the KdV.

Use the module: read("d:/gem32_12.mpl"):

Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t),V(x,t)]);

Declare the PDEs:

gem_decl_eqs([diff(V(x,t),t)=(U(x,t)^2+1)*diff(U(x,t),x)+U(x,t),

diff(U(x,t),t)= diff(V(x,t),x)],

solve_for=[diff(V(x,t),t), diff(U(x,t),t)]);

Generate determining equations:
det_eqs:=gem_conslaw_det_eqs([x,t,U(x,t),V(x,t)]):

Reduce the overdetermined system:

CL_multipliers:=gem_conslaw_multipliers();

simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);

Solve determining equations:

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

Obtain corresponding conservation law fluxes/densities:

gem_get_CL_fluxes(multipliers_sol, method=*****);
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Computational examples
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Surfactants - Applications

Surfactant molecules adsorb at phase separation interfaces.

Can form micelles, double layers, etc.
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Surfactants - Applications

Soap bubbles...
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Surfactant Transport Equations

 

 = 0 

n 

u 

Parameters

Surfactant concentration c = c(x, t).

Flow velocity u(x, t).

Two-phase interface: phase separation surface Φ(x, t) = 0.

Unit normal: n = − ∇Φ

|∇Φ| .
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Surfactant Transport Equations

 

 = 0 

n 

u 

Surface gradient

Surface projection tensor: pij = δij − ni nj .

Surface gradient operator: ∇s = p · ∇ = (δij − ni nj )
∂

∂x j
.

Surface Laplacian:

∆s F = (δij − ni nj )
∂

∂x j

(
(δik − ni nk )

∂F

∂xk

)
.
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Surfactant Transport Equations

 

 = 0 

n 

u 

Governing equations

Incompressibility condition: ∇ · u = 0.

Fluid dynamics equations: Euler or Navier-Stokes.

Interface transport by the flow: Φt + u · ∇Φ = 0.

Surfactant transport equation:

ct + ui ∂c

∂x i
− cni nj

∂ui

∂x j
− α(δij − ni nj )

∂

∂x j

(
(δik − ni nk )

∂c

∂xk

)
= 0.
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Surfactant Transport Equations

 

 = 0 

n 

u 

Fully conserved form?

ct + ui ∂c

∂x i
− cni nj

∂ui

∂x j
− α(δij − ni nj )

∂

∂x j

(
(δik − ni nk )

∂c

∂xk

)
= 0.

Can the surfactant transport equation be written in the conserved form?
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Surfactant Transport Equations: CLs

Governing equations (α 6= 0)

G 1 =
∂ui

∂x i
= 0,

G 2 = Φt +
∂(ui Φ)

∂x i
= 0,

G 3 = ct + ui ∂c

∂x i
− cni nj

∂ui

∂x j
− α(δij − ni nj )

∂

∂x j

(
(δik − ni nk )

∂c

∂xk

)
= 0.
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Surfactant Transport Equations: CLs

Governing equations (α 6= 0)

G 1 =
∂ui

∂x i
= 0,

G 2 = Φt +
∂(ui Φ)

∂x i
= 0,

G 3 = ct + ui ∂c

∂x i
− cni nj

∂ui

∂x j
− α(δij − ni nj )

∂

∂x j

(
(δik − ni nk )

∂c

∂xk

)
= 0.

Multipliers:

Λ1 = ΦF(Φ) |∇Φ|−1

(
∂

∂x j

(
c
∂Φ

∂x j

)
− cni nj

∂2Φ

∂x i∂x j

)
,

Λ2 = −F(Φ) |∇Φ|−1

(
∂

∂x j

(
c
∂Φ

∂x j

)
− cni nj

∂2Φ

∂x i∂x j

)
,

Λ3 = F(Φ)|∇Φ|,

where F = F(Φ) is an arbitrary sufficiently smooth function.
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Surfactant Transport Equations: CLs

Governing equations (α 6= 0)

G 1 =
∂ui

∂x i
= 0,

G 2 = Φt +
∂(ui Φ)

∂x i
= 0,

G 3 = ct + ui ∂c

∂x i
− cni nj

∂ui

∂x j
− α(δij − ni nj )

∂

∂x j

(
(δik − ni nk )

∂c

∂xk

)
= 0.

An infinite CL family:

Dt (c F(Φ) |∇Φ|) + Di

(
Ai F(Φ) |∇Φ|

)
= 0,

where

Ai = cui − α
(

(δik − ni nk )
∂c

∂xk

)
, i = 1, 2, 3.
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Euler equations: a CL study

Euler equations of inviscid fluid flow:

∇ · u = 0, ut + (u · ∇)u +∇p = 0.
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Euler equations: a CL study

Euler equations of inviscid fluid flow:

∇ · u = 0, ut + (u · ∇)u +∇p = 0.

CL Multiplier ansatz [Oberlack & C., 2014]:

Λσ, σ = 1, 2, 3, 4, are functions of 45 variables

t, x , y , z , u1, u2, u3, p, u1
y , u

1
z , u2

x , u
2
y , u

2
z , u3

x , u
3
y , u

3
z , pt , px , py , pz ,

u1
yy , u

1
yz , u

1
zz , u2

xx , u
2
xy , u

2
xz , u

2
yy , u

2
yz , u

2
zz , u3

xx , u
3
xy , u

3
xz , u

3
yy , u

3
yz , u

3
zz ,

ptt , ptx , pty , ptz , pxx , pxy , pxz , pyy , pyz , pzz .
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Euler equations: a CL study

Euler equations of inviscid fluid flow:

∇ · u = 0, ut + (u · ∇)u +∇p = 0.

Computed CLs:

Continuity (generalized): ∇ · (k(t) u) = 0.

Momentum (generalized): Dt(f (t)u1) + Dx (. . .) + Dy (. . .) + Dz (. . .) = 0; same for
y , z .

Angular momentum: Dt(zu2− yu3) +Dx (. . .) +Dy (. . .) +Dz (. . .) = 0; same for y , z .

Kinetic energy: Dt(K) + ... = 0, K = 1
2
|u|2.

Helicity: Dt(h) + ... = 0, h = u · ω, ω = curlu.

Linear overdetermined system of 58,273 determining equations on the unknown Λσ.

Additional special CLs arise in symmetry-reduced settings.
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Global and local conservation laws...
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Conservation laws – summary

For a DE system G [v ] = 0:

The solution manifold E is a geometric object.

CLs reflect its properties, and are coordinate-independent. In particular,

D(z∗)i (Φ∗)i [v∗] = J Di Φ
i [v ] = 0

after a change of variables

(z∗)i = f i (z , v), i = 1, . . . , n,
(v∗)k = g k (z , v), k = 1, . . . ,m.

CLs have a characteristic form: Di Φ
i [v ] = Λσ[v ]Gσ[v ].

CLs can be systematically computed (the direct method and Maple implementation).

The direct method is complete, within a chosen ansatz.
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Variational systems and Noether’s 1st
theorem
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Symmetries and conservation laws

Local symmetries and local conservation laws of DE systems are closely related.

A specific well-known relationship: Noether’s 1st theorem for variational DE systems.
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Symmetries of differential equations

System of differential equations (PDE or ODE) G [v ] = 0:

Gσ(z , v , ∂v , . . . , ∂qσ v) = 0, σ = 1, . . . ,M.

Independent and dependent variables: z = (z1, ..., zn), v = v(z) = (v 1, ..., v m).

A point symmetry: a change of variables

(z∗)i = f i (z , v), i = 1, . . . , n,
(v∗)k = g k (z , v), k = 1, . . . ,m

mapping solutions to solutions.

A Lie group of point symmetries: a symmetry group with parameter(s) a

(z∗)i = f i (z , v ; a) = z i + aξi (z , v) + O(a2), i = 1, . . . , n,
(v∗)k = g k (z , v ; a) = v k + aηk (z , v) + O(a2), k = 1, . . . ,m.

A corresponding Lie algebra of infinitesimal generators:

X = ξi (z , v)
∂

∂z i
+ ηk (z , v)

∂

∂v k
.
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Symmetries of differential equations

Evolutionary form of a Lie point symmetry:

X̂ = ζk [v ]
∂

∂vµ
,

(z∗∗)i = z i , i = 1, . . . , n,
(v∗∗)k = v k + aζk [v ] + O(a2), k = 1, . . . ,m.

(z, v) 

(z*, v*) 

(z, v**) 

(, ) 
)

(0, ) 
)

z 

v 
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Symmetries of differential equations

Example 1: translations

A translation
x∗ = x + C , t∗ = t, u∗ = u (C ∈ R)

leaves the KdV equation invariant:

ut + uux + uxxx = 0 = u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗ .

Example 2: scalings

A scaling
x∗ = αx , t∗ = α3t, u∗ = α−2u (α ∈ R)

also leaves the KdV equation invariant:

ut + uux + uxxx = 0 = α5 (u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗) .
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Variational principles

Action integral

J[v ] =

∫
Ω

L(z , v , ∂v , . . . , ∂k v) dz .

Principle of extremal action

Variation of v : v(z)→ v(z) + δv(z); δv(z) = εw(z); δv(z)
∣∣
∂Ω

= 0.

Variation of action: δJ ≡ J[v + εw ]− J[v ] = o(ε) ⇒

Euler-Lagrange equations:

Gσ[v ] = Evσ (L[v ]) = 0, σ = 1, . . . ,m.

# equations = # unknowns.
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Variational principles

Example: Wave equation for u(x , t)

L = P − K =
1

2
τux

2 − 1

2
ρut

2.

Eu =
d

du
−Dt

d

dut
−Dx

d

dux
.

EuL = ρ(utt − c2uxx ) = 0, c2 = τ/ρ.
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Variational principles

Philosophical rather than physical!

The vast majority of models do not have a variational formulation.

Mathematically, related to the self-adjointness of linearization
(coordinate-dependent!)

It remains an open problem how to determine whether a given system has a
variational formulation.
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Noether’s 1st theorem

A variational symmetry: preserves the action integral.

Theorem

Given:

1 a PDE system G [v ] = 0, following from a variational principle;

2 a local variational symmetry in an evolutionary form:

(z i )∗ = z i , (v k )∗ = v k + a ζk [v ] + O(a2).

Then the given DE system has a local conservation law Di Φ
i [v ] = 0.

In particular,
Di Φ

i [v ] = Λσ[v ]Rσ[v ],

where the multipliers are the evolutionary symmetry components:

Λσ[v ] = ζσ[v ].
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Noether’s theorem: example

Example: wave equation

Equation: utt = c2uxx , u = u(x , t).

Time translation symmetry:

t∗ = t + a, ξt = 1;
x∗ = x , ξx = 0,
u∗ = u, η = 0,

Evolutionary symmetry component: ζ = −ut ;

Multiplier: Λ = ζ = −ut ;

Conservation law (Energy):

ΛR = −ut(utt − c2uxx ) = −
[

Dt

(
u2

t

2
+ c2 u2

x

2

)
− Dx

(
c2utux

)]
= 0.
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Noether’s 1st theorem and CL
computation?
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Noether’s 1st theorem – summary

The system G [v ] = 0 may or may not be variational.

Lie symmetries can be systematically computed. For variational models, some of
them are variational (preserve the action).

Evolutionary components ζ[v ] of symmetry generators satisfy linearized equations.

CL multipliers satisfy adjoint linearized equations and extra conditions.

For a variational system, linearization is self-adjoint.

Then evolutionary variational symmetry components = CL multipliers.

Noether’s theorem is insightful, but not general nor efficient way to compute CLs.

The direct CL construction method is general; it is a practical shortcut even for
variational DE systems.
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Different types of CLs in 3D
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PDE models in three spatial dimensions

General classical physical systems in 3D:

Independent variables: coordinates x = (x1, x2, x3) ∈ Ω, and possibly time t.

Dependent variables: v = v(t,x) or v(x); m ≥ 1 scalars.

PDEs: Gσ[v ] = 0, σ = 1, . . . ,M.

Typical applications:

Nonlinear mechanics, elasticity, viscoelasticity, plasticity

Fluid mechanics

Electromagnetism

Wave propagation; problems, diffusion, etc.
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PDE models in three spatial dimensions: examples

Example: Microscopic Maxwell’s equations in Gaussian units

divB = 0, Bt + c curlE = 0,

divE = 4πρ, Et − c curlB = −4πJ.
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PDE models in three spatial dimensions: examples

Example: Navier-Stokes fluid dynamics equations

ρt + div ρu = 0,

ρ(ut + u · ∇u) = − grad p + µ∆u.
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PDE models in three spatial dimensions: examples

Example: Ideal magnetohydrodynamics (MHD) equations

ρt + div ρu = 0, ρ(ut + (u · ∇)u) = − 1

µ
B× curlB− grad p,

Bt = curl (u×B), divB = 0.
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1. Time-independent/topological CLs

Applications:

Time-independent models.

Differential constraints, e.g., div B = 0, curl u = 0...
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1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws

Local form: DivΨ[v ] = 0.

Global form in V, ∂V = S:

∮
S

Ψ[v ] · dS
∣∣
E = 0. (Gauss thm.)

Global form when ∂V = S1 ∪ S2:∮
S1

Ψ[v ]|E · dS =

∮
S2

Ψ[v ]|E · dS.

n 

 

n 

 

S S1

S2
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1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws

Local form: DivΨ[v ] = 0.

Global form in V, ∂V = S:

∮
S

Ψ[v ] · dS
∣∣
E = 0. (Gauss thm.)

Global form when ∂V = S1 ∪ S2:∮
S1

Ψ[v ]|E · dS =

∮
S2

Ψ[v ]|E · dS.

Examples:

Incompressible flow: divu = 0.

Absence of magnetic sources: divB = 0.
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1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

Local form: CurlΨ[v ]|E = 0.

Global form in S, ∂S = C:

∫
C

Ψ[v ] · d` = 0.

Global form, ∂S = C1 ∪ C2:∮
C1

Ψ[v ]|E · d` =

∮
C2

Ψ[v ]|E · d`.

d ℓ 
S  

d ℓ 

S 

C1

C2

C
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1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

Local form: CurlΨ[v ]|E = 0.

Global form in S, ∂S = C:

∫
C

Ψ[v ] · d` = 0.

Global form, ∂S = C1 ∪ C2:∮
C1

Ψ[v ]|E · d` =

∮
C2

Ψ[v ]|E · d`.

Examples:

Irrotational flow: curlu = 0.

Equilibrium MHD–magnetic equation: curl (u×B) = 0
⇒ circulation condition:

∀S ⊂ Ω,

∫
∂S

(u×B) · d` = 0.
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2. Time-dependent CLs on fixed domains

2A. Volumetric conservation laws:

A global volumetric conservation law of a given 3D PDE model, for V ⊂ Ω:

d

dt

∫
V

T dV = −
∮
∂V

Ψ · dS,

holding for all solutions v(t,x) ∈ E .

Local formulation: a continuity equation

DtT [v ] + DivΨ[v ] = 0, v ∈ E .

Scalar conserved density: T = T [v ], vector spatial flux: Ψ = Ψ[v ].
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2. Time-dependent CLs on fixed domains

2A. Volumetric conservation laws:

A global volumetric conservation law of a given 3D PDE model, for V ⊂ Ω:

d

dt

∫
V

T dV = −
∮
∂V

Ψ · dS,

holding for all solutions v(t,x) ∈ E .

Physical meaning: the rate of change of the
volume quantity ∫

V
T [v ] dV

is balanced by the surface flux∮
∂V

Ψ[v ] · dS.
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2. Time-dependent CLs on fixed domains

Example: Microscopic Maxwell’s equations in Gaussian units

divB = 0, Bt + c curlE = 0,

divE = 4πρ, Et − c curlB = −4πJ.

Conservation of electromagnetic energy:

1
2
∂t (|E|2 + |B|2) + c div (E×B) = 0.

A. Shevyakov (UofS, Canada) Conservation Laws of Differential Equations October 12, 2017 52 / 68



2. Time-dependent CLs on fixed domains

2B. Surface-flux conservation laws:

A global surface-flux conservation law of a given 3D PDE model:

d

dt

∫
S

T · dS = −
∮
∂S

Ψ · d`, v ∈ E .

Local formulation: a vector PDE

Dt T[v ] + Curl Ψ[v ] = 0, v ∈ E .

S ⊆ Ω is a fixed bounded surface.

Vector conserved flux density: T = T[v ]; vector spatial circulation flux: Ψ = Ψ[v ].

Local form: three related scalar divergence-type CLs.
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2. Time-dependent CLs on fixed domains

2B. Surface-flux conservation laws:

A global surface-flux conservation law of a given 3D PDE model:

d

dt

∫
S

T · dS = −
∮
∂S

Ψ · d`, v ∈ E .

Local formulation: a vector PDE

Dt T[v ] + Curl Ψ[v ] = 0, v ∈ E .

 

T 

 

d S 

d ℓ 

Physical meaning: rate of change of the
surface quantity∫

S
T[v ] · dS

is balanced by the circulation∮
∂S

Ψ[v ] · d`.
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2. Time-dependent CLs on fixed domains

Example: microscopic Maxwell’s equations in Gaussian units

divB = 0, Bt + c curlE = 0,

divE = 4πρ, Et − c curlB = −4πJ.

Magnetic flux conservation: a global surface-flux conservation law (Faraday’s law)

d

dt

∫
S

B · dS = −c

∮
∂S

E · d`.
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2. Time-dependent CLs on fixed domains

Example: ideal magnetohydrodynamics (MHD) equations

ρt + div ρu = 0,

ρ(ut + (u · ∇)u) = − 1

µ
B× curlB− grad p,

divB = 0,

Bt = curl (u×B).

Conserved flux density, spatial circulation flux:

T = B, Ψ = B× u.

The global form of the surface-flux conservation law

d

dt

∫
S

B · dS = −
∮
∂S

(B× u) · d`

describes the time evolution of the total magnetic flux through a given fixed surface S.

A similar CL holds for non-ideal (resistive, viscous) plasmas.
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2. Time-dependent CLs on fixed domains

2C. Circulatory conservation laws:

A global circulatory conservation law of a given 3D PDE model:

d

dt

∫
C

T · d` = −Ψ
∣∣
∂C , v ∈ E .

Local local circulatory conservation law:

Dt T[v ] + Grad Ψ[v ] = 0, v ∈ E .

C ⊆ Ω is a fixed simple curve.

Vector conserved circulation density: T = T[v ]; vector spatial boundary flow:
Ψ = Ψ[v ].

Local form: three related scalar divergence-type CLs.
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2. Time-dependent CLs on fixed domains

2C. Circulatory conservation laws:

A global circulatory conservation law of a given 3D PDE model:

d

dt

∫
C

T · d` = −Ψ
∣∣
∂C , v ∈ E .

Local local circulatory conservation law:

Dt T[v ] + Grad Ψ[v ] = 0, v ∈ E .

C 

d ℓ 
T 

Physical meaning: rate of change of the
line integral quantity∫

C
T · d`

is balanced by the flow through the ends of
the curve.

A. Shevyakov (UofS, Canada) Conservation Laws of Differential Equations October 12, 2017 55 / 68



2. Time-dependent CLs on fixed domains

Example: irrotational barotropic gas flow.

ρt + div(ρu) = 0,

ut + (curlu)× u + grad f = 0, f = fbar =
|u|2

2
+

∫
p′(ρ)

ρ
dρ.

Irrotational: curlu = 0.

Barotropic: p = p(ρ), ⇒ ut + grad f = 0.

Circulatory conservation law over an arbitrary static curve C:

d

dt

∫
C

u · d` = −f |∂C .

For closed curves, ∂C = ∅:
d

dt

∮
C

u · d` = 0,

conservation of a global velocity circulation around a static closed path.
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CLs on moving domains
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3. Time-dependent CLs on moving domains

Flow velocity: u(t,x).

A moving material domain consists of the same material points.

n 

u 
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3. Time-dependent CLs on moving domains

Moving volumetric conservation laws:

A moving volumetric conservation law of a given 3D PDE model:

d

dt

∫
V(t)

T [u, v ] dV = −
∮
∂V(t)

Υ[u, v ] · dS,

holding for all solutions v = v(t,x) ∈ E , for a volume V(t) ∈ Ω transported by the
flow.

Local formulation:

Leibniz’s rule for moving domains:

d

dt

∫
V(t)

T [u, v ] dV =

∫
V(t)

DtT [u, v ] dV +

∮
∂V(t)

T [u, v ] u · dS

Local form:
Dt T [u, v ] + Div (Υ[u, v ] + T [u, v ]u) = 0.
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3. Time-dependent CLs on moving domains

Moving volumetric CL example: helicity

Constant-density fluid flow:

divu = 0,

ut + (curlu)× u + grad f = 0, f =
|u|2

2
+

p

ρ
.

The fluid helicity: h ≡ u · ω.

Helicity dynamics equation: ht + div (ω · grad f + (ω × u)× u) = 0.

Moving volumetric CL, local form:

Dt T [u, v ] + Div (Υ[u, v ] + T [u, v ]u) = 0, v ∈ E .

T = h = u · ω, Υ = (f − |u|2)ω.

Global form:
d

dt

∫
V(t)

h dV = −
∮
∂V(t)

(f − |u|2)ω · dS.
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3. Time-dependent CLs on moving domains

Material conservation laws

A material conservation law: a moving volumetric CL with a vanishing spatial flux,
Υ[u, v ]|E = 0. of a given 3D PDE model, for V ⊂ Ω:

d

dt

∫
V(t)

T [u, v ] dV = −
∮
∂V(t)

Υ[u, v ] · dS = 0.

Local formulation:
DtT [u, v ] + Div(T [u, v ]u) = 0.

A well-known expression for incompressible flows divu = 0:

d

dt
T [u, v ] = 0,

d

dt
≡ Dt + u ·Grad
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3. Time-dependent CLs on moving domains

Material conservation laws: example

The continuity equation in gas/fluid dynamics:

ρt + div(ρu) = 0,

ρ(ut + u · ∇u) +∇p = µ∆u + ρg.

Conservation of mass in a moving material domain :

d

dt

∫
V(t)

ρ dV = 0.
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3. Time-dependent CLs on moving domains

In a similar way, moving surface-flux and moving circulatory CLs in material domains
arise.

Material CLs arise in a similar manner.
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CLs in 3D: overview
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Conservation laws in 3D: overview

PDE systems in (3+1) dimensions can have 8 different kinds of CLs:

2 time-independent/topological.

3 time-dependent (fixed domains).

3 time-dependent (moving domains) (also material CLs).

Each has a local and a global form.

Common framework, clear physical meaning.

Each kind is locally given by divergence expression(s) ⇒ systematic computation.

Physical examples are readily available.
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Talk summary
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Talk summary

CLs are useful in physics, analysis, and numerical simulations.

CLs have local and global forms. Local forms are given by one or more divergence
expressions.

More than one kind of CLs exist, with different physical meaning. In 3D, there are 8
physically different kinds of CLs.

CLs are coordinate-independent; they can be obtained systematically through the
Direct construction method.

Symbolic software for such computations exists.

For variational models, Noether’s theorem gives useful insights in symmetry-CL
relations. These relations are, however, known in a more general setting.
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What was left out...

We did not discuss:

Multiple computational aspects; multiplier dependencies; singular multipliers; etc.

CL triviality and equivalence questions.

2nd Noether’s theorem.

Useful tricks and techniques to get CLs “cheap”.

Higher-order & nonlocal symmetries. Nonlocal CLs.

Integrability, linearization, . . . .
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Some references

Olver, P. (1993)
Applications of Lie Groups to Differential Equations. Springer-Verlag.

Bluman, G., Cheviakov, A., and Anco, S. (2010)
Applications of Symmetry Methods to Partial Differential Equations. Springer.

Anco, S. and Cheviakov, A. (2017)
On different types of global and local conservation laws for partial differential equations. I:
Three spatial dimensions. Preprint.

Cheviakov, A. (2004–now)
GeM for Maple: a symmetry & conservation law symbolic computation package.
http://math.usask.ca/~shevyakov/gem/

Anco, S. (2017)
On the incompleteness of Ibragimov’s conservation law theorem and its equivalence to a
standard formula using symmetries and adjoint-symmetries. Symmetry 9 (3).

Thank you for your attention!
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