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© Notation and Variables
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Variables:

2

o Independent: x = (x*,x?,...,x") or (t,x*,x?,...) or (t,X,y,...).

o Dependent: u = (u'(x), t*(x), ..., u™(x)) or (u(x), v(x),...).
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Variables:

2

o Independent: x = (x*,x?,...,x") or (t,x*,x?,...) or (t,X,y,...).

o Dependent: u = (u'(x), t*(x), ..., u™(x)) or (u(x), v(x),...).

Partial derivatives:

@ Notation:

k
Bu _ k. k
oxi — T

o Eg.,
gu(x t) = ur = Oru
ot ) = U = Wilo
o All first-order partial derivatives of u: du.

o Eg,

u= (ul(Xv t)7 UZ(X7 t))v Ou = {u>1(7 utl» u>2(7 U?}
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Higher-order partial derivatives

@ Notation: for example,
2

%u(x,y, Z) = U = 2u.

o All p*-order partial derivatives: 9”u.
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Higher-order partial derivatives

@ Notation: for example,
2

@u(x,y, Z) = U = 2u.

o All p*-order partial derivatives: 9”u.

Jet spaces

o We wish to work with differential equations as with algebraic equations.

o Jet space of order p: linear space JP(x|u) with coordinates x, u, du, ..., 9°u.
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Differential functions

o A differential function defined on a subset of JP(x|u) is an expression that may
involve independent and dependent variables, and derivatives of dependent variables
to some order < p.

Flu] = F(x,u,0du,...,0"u).
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Differential functions

o A differential function defined on a subset of JP(x|u) is an expression that may
involve independent and dependent variables, and derivatives of dependent variables
to some order < p.

Flu] = F(x,u,0du,...,0"u).

v

Differential equations

@ A system of differential equations (PDE, ODE) of order k:

R°[u] = R°(x,u,du,...,0"u) =0, o=1,...,N.
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Differential functions

o A differential function defined on a subset of JP(x|u) is an expression that may
involve independent and dependent variables, and derivatives of dependent variables

to some order < p.
Flu] = F(x,u,0u,...,0"u).

v

Differential equations

@ A system of differential equations (PDE, ODE) of order k:

R°[u] = R°(x,u,du,...,0"u) =0, o=1,...,N.

@ The 1D diffusion equation for u(x, t) can be written as

0 = ur—uxx = H(u,u, uw) = H[u],

that is, an algebraic equation in J?(x, t|u).
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The total derivative of a differential function:

@ A basic chain rule for u = u(x,y):

o g g g 98
axEC Y ththo ) = B+ 5 et gt F G,

o The total derivative does the same for differential functions on the jet space:

9g %, L%, igum

Dxglu] = Ax + Ou ~ Ouy ou,

where X, y, U, Uy, Uy, Ux, Uy, are coordinates in J?(x, y|u).
v

General case

2 ..., x"); dependent: u(x) = (uv*,...,u™).

o Independent variables: x = (x*, x
o The total derivative operator with respect to x':

3} 0
ox! Ul S T Y

0
our +uj

i I
112 au;;iz

D; =

+...7

9
5‘uf;
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© Basics of Point Symmetry Computations
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Lie Groups of Point Transformations

e Variables x = (x!,...,x"), u=(v',...,u™).

@ A Lie group of point transformations:
(x)* = fi(x,u; ),
(u')" = g"(x,ue),
eeM~R",

where € is a vector parameter, and the transformations form a group with some
composition law.
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Lie Groups of Point Transformations

e Variables x = (x!,...,x"), u=(v',...,u™).

@ A one-parameter Lie group of point transformations:
(x)* = fi(x,u;e),
(u")" =g"(x,uie), (1)
eel CR,
where f, g are bijective and smooth in x,u, and analytic in €.

o Lie's 1st theorem: WLOG (1) is Abelian, with an additive law of composition of the
parameter: ‘ _ ‘
(x")™ =f'(x",u*;d) = f'(x,u;e + 9),

(u#)** — gu(x*yu*; 5) — gu(x’ u e+ 5).
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Infinitesimal Generators

@ A one-parameter Lie group of point transformations:
(x) = fi(x,u;e) = x' +e€/(x,u) + O(e?),
(u")" = g"(x,u;e) = u" +en(x,u) + O(c?).

@ The corresponding infinitesimal generator (TVF):

i g 0
X= § (X’ u)ax,' _’_n#(x’ U)Wv

where )
of' u_ Og"

&= de lema’ T T e oo

o Fact: the global group, additive in parameter, is recovered from the solution of an

ODE problem
KVE) _ (@@, ()0 = ¥,
HVE) e @ (@) () (0) = v

@ This integration can be automated using symbolic computations.
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Symmetry Determining Equations

Invariance of algebraic equations:

A system of algebraic equations
R7(x,u)=0, o=1,...,N
is invariant under the transformation
(x)* =fix,uwe), (") =g'(xue), e€R

if and only if

XR%(x,u) =0, a=1,...,N.

R9=0, o=1,...,N

(That is, the curve (surface) in the (x,u) - space is invariant.)
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Symmetry Determining Equations

Invariance of differential equations:

A system of differential equations of order k
R°[u] =0, o=1,...,N
is invariant under the transformation
(x)* = fix,we), (") =g'(x,ue), e€R

if and only if

X5 RY[u] =0, a=1,...,N.
R[u]=0, o=1,...,N

(That is, the curve (surface) in the jet space J9(x|u) is invariant.)

o X®): the kth prolongation of X in J9(x]|u).

@ Note: on solutions means using equations and their differential consequences as
required.
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© Computation of Point Symmetries in Maple/GeM
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Maple software and the GeM module

@ GeM module: current version 32.12.
@ Works with Maple versions 14...2017.

o Symmetries (point, local, approximate); equivalence transformations; conservation

laws, more.
@ Description, tutorial, examples: https://math.usask.ca/"shevyakov/gem/
o Implemented as text (MPL) file; all variables and functions are unprotected.

@ The next version will use an object-oriented framework...
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Step 1. Defining variables in Maple/GeM

A given DE system:

R°[u] = R(x,u,du,...,8"u) =0, o=1,...,N.

o Independent: x = (x*,x%,...,x") or (t,x,y,...).
o Dependent: u(x) = (u(x), v(x), ...).
o “Arbitrary” constant parameters: ci,. .., Cp.

o “Arbitrary” constitutive functions: Fi[u],..., Fq[u].

v

Example — first step: read package, define variables.

@ Use the module: read("d:/gem32_12.mpl"):

o Declare variables and arbitrary functions/constants, for example,

gem_decl_vars(indeps=[x,t], deps=[U(x,t),V(x,t)],
freeconst=[a,b], freefunc=[F(U(x,t), diff(U(x,t),x)]);

V.
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Step 2. Declare the DEs

@ A given DE system:
R’[u] = R°(x,u,du,...,8u) =0, o=1,...,N.
@ Declare the equations:

gem_decl_eqgs([...], solve_for=[...]);

o First list: a set of equations (ODE or PDE) involving only the pre-defined
independent and dependent variables, arbitrary functions, and arbitrary constants.

@ For symmetry computations, it is necessary that a given PDE system be in a solved
form with respect to some leading derivatives, specified in the
\color{red}solve_for parameter.
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Kovalevskaya form

Extended Kovalevskaya form

A PDE system {R?[u] = 0}7_; consisting of m equations and m dependent variables
u = {u¥(2)}7_, is represented in the extended Kovalevskaya form {R"[u] = 0}7_; with
respect to an independent variable, say, z,, if each equation has the form

R"[]_

527 —H"[u] =0, o=1,...,m,
where r, < p, and the functions H? [u] may involve z, u and derivatives of the functions u
with respect to z up to some maximal order p; moreover, each u® is differentiated with
respect to z, at most r, — 1 times, b=1,..., m.

In other words, a PDE system in extended Kovalevskaya form is solved for the leading

derivatives 8w 7
“u

0z’

c=1,...,m.
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Step 3. Generate symmetry determining equations

@ Generate symmetry determining equations

XWR[u]

=0, a=1,...,N.

R [u]=0, o=1,...,N

and split them (setting coefficients at free derivatives to zero), using

det_eqs:=gem_symm_det_eqs([...]);

@ The list [...] specifies the dependence of symmetry components. Can include
independent and dependent variables (for point symmetries), and also derivatives of
dependent variables (for higher-order symmetries).

@ In principle, it is possible to specify different dependencies for different symmetry
components (not explained now).

@ The resulting Maple set of split symmetry determining equations will be placed in
the variable det_eqgs (can use another name).

o If one does not wish the determining equations to be split with respect to (higher)
derivatives which do not participate in tangent vector field coordinates, one specifies
an additional parameter

return_unsplit=true
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Step 4. Store names of symmetry components

@ Request names of symmetry components and place them in some user variable.

sym_components :=gem_symm_components () ;
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Step 5 (optional). Simplify and reduce the determining equations

@ DEtools[rifsimp] is a powerful Maple built-in routine for Grébner basis-based
elimination and simplification of systems of DEs.

o It is able to significantly reduce the number of symmetry determining equations.

@ It provides the dimension of the solution set (option mindim=1) without solving the
equations.

e rifsimp is able to do case splitting/clasifications (will discuss later).

o rifsimp will not work if any equations are not differential-polynomial (yet there are
ways around it).

o Example:

simplified_eqs:=DEtools[rifsimp] (det_eqs, sym_components, mindim=1);
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Step 6. Solve the determining equations

@ Use Maple pdsolve to solve the determining equations:

symm_sol:=pdsolve(simplified_eqs[Solved], sym_components);

e Could do directly without rifsimp (not always optimal):

symm_sol:=pdsolve(det_eqs, sym_components);

@ Now the symmetry components are stored in symm_sol variable. Maple arbitrary
constants _C1, _C2, etc., or free functions _F1, _F2, etc., correspond to linearly
independent symmetry generators.

@ pdsolve is a great solver but not a “universal black box". Its returned solution
might not be complete; for example, in the case of linear equations.

A. Cheviakov (UofS, Canada) Symmetries of DEs April 2018 22 /41



Step 7. Output the symmetry generators

@ Print all symmetry generators:

gem_output_symm(symm_sol) ;

@ Can extract a single symmetry, e.g., one corresponding to _C1:

read("d:/gem_globgroup_and_equiv.txt");
X1:=gem_extract_symm(symm_sol,spec={_C1=1});

and integrate to compute the global Lie group:

gem_global_group (X1, group_param_name=’epsilon’);
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0 Point Symmetry Computations: Examples and Remarks
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Point Symmetries: Computational Examples
Interface recommendation: Tools/Options/Display/Input — Maple notation.

Computational examples
@ Symmetries of a second-order ODE: ‘y”(x) =y(x)y’(x) ‘

@ Symmetries of a PDE: Burgers equation u = u(x,t).

o Only the case v # 0 (see code).

© Symmetries of a PDE system — 2D constant-density Euler equations:

ux+v, =0,
p(ur + uux + vuy) =
o+ vy + wy) = —p,

—Px,

for the unknowns u(t, x,y), v(t,x,y), p(t,x,y).

o Equations solved with respect to the x—derivatives.
o An infinite set of point symmetries (generalized Galilei group, pressure freedom)

25 /41
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@ Linear and nonlinear ODEs of order k > 1 have a finite number of point symmetries.

@ A PDE or a PDE system can have an infinite number of point symmetries (involving
arbitrary functions). [Examples: mechanical systems with generalized Galilei group;
linear and linearizable PDEs.]

In this case, pdsolve may or may not be helpful.

o Example: linear heat equation

o Symmetries of linear equations and their computation will be discussed later.

© A global multi-parameter Lie group can be computed by applying
gem_global_group to a linear combination of symmetry generators.
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e Point Transformations in Evolutionary Form. Higher-Order Symmetries
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Evolutionary Form of Point Transformation

e Variables x = (x!,...,x"), u=(v',...,u™).

@ A one-parameter Lie group of point transformations:
(x')" = fl(x,u;e) = X' +e€'(x,u) + O(?),
(u")" = g"(x,u;¢) = u" + e’ (x,u) + O(€?).

@ The corresponding infinitesimal generator (TVF):

i 0 S}
X =¢'(x, u)axi + 0t (x, u)aj

@ The same local transformation in the evolutionary form:

() =
(") = v+ = [u] + O().

o Evolutionary form of the symmetry generator:

K=l [l = o'l - e
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Evolutionary Form of a Point Transformation: Example

o Consider an ODE y/ = —x/y < y?+4 x* = C = const.

o A scaling symmetry:
x* = e°x,

* £

ut =ey.

Point symmetry generator:

0 0
X = £(X,y)a +n(x7y)@, E=x, n=y.

Local form:

x* = x+e&(x,y) + 0(?),
y* =y +en(x,y)+ O(e?).
Evolutionary form of the symmetry generator:
5 0
X = CMT,, (Yl=n—y'(x)E=y+x*/y.

@ Local transformation in the evolutionary form:

xT = x,
2

ul=u+e (y—|—X7) + 0(&?).
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Evolutionary Form of a Point Transformation: Example

e ¢=0.1:
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Evolutionary Form of a Point Transformation

@ Is the evolutionary form of a point transformation better?

“(xu)(9 vs. X= CHul=—

x=¢(x, —

8uM
o Evolutionary form generalizes to higher-order transformations (next).

@ For a DE system
R°u]l=0, o=1,...,N,

symmetry components in the evolutionary form ¢#[u] = v* are solutions of the
linearized equations (Fréchet derivative)

) OR*[u] | OR7[u], AR [u]
P _ .. . . P _
LoV = | 5=+ FDit +3u,-p1...,-kD“”'D'k v =0

which relates them to perturbation analysis, cf.
(Y =x', (v =" 4 e¢H[u] + O(?),

and the first Noether's theorem.
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Higher-Order Local Transformations, Evolutionary Form

e Variables x = (x!,...,x"), u=(v',...,u™).

@ A one-parameter Lie group of higher-order transformations of order p:
() =x,
(u)" = u* +e¢*[u] + O(£?),

where (*[u] = ¢*(x,u,0u,...,0%u).

If p=1, and ¢" are linear in Ou, this corresponds to a point transformation.

Otherwise, it is a higher-order (possibly contact) transformation.

Generally higher-order transformations cannot be integrated to get a closed-form
global expression for the group of transformations.

@ Note that higher-order transformations can be sought in the non-evolutionary form
(x')" = x"+e€'[u] + O(<?),
(u")* = u* + en*[u] + O(£?),

but then &'[u],n*[u] are not unique: ¢*[u] = n*[u] — ul'¢’.
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Example: Higher-Order Symmetries of the KdV

e KdV: ‘ Us + Uty 4 U = 0. ‘ S-integrable, has an infinite symmetry hierarchy.

@ Seek symmetries up to order 5 (in x):

det_eqgs:=gem_symm_det_eqgs (

[x,t, U(x,t), diff(U(x,t),x),

diff (U(x,t),x,x), diff(U(x,t),x,x,x),

diff (U(x,t),x,x,x,x), diff(U(x,t),x,x,x,x,x)],
in_evolutionary_form=true );

@ Which symmetries are higher-order?

> gem_output_symm(symm_sol);
Maximum number of free constants _C.. or free functions _F.. to be considered : 100

_C5,X_1=UxDy
_C2,X_2=(Uxt—1) Dy
_C4, X_3=(UUx+Uxxx) D

CL,X 4= (u Uxt — % UXX—% U+Uxxxt) D,

(12 1 3
_C3, X_S-[4 U” Ux + Ux Uxx + 5 U Uxxx + 10 Uxxxxx) Dy
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© Nonlocal Symmetries
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Local Conservation Laws, Potential Systems, Subsystems

Nonlocally related PDE systems:

@ For a DE system R?[u] = 0, a symmetry is any transformation that maps solutions
to solutions.

@ Symmetries are not exhausted by Lie groups of point & local symmetries.

@ One extension: nonlocal symmetries that can arise as local symmetries of an
equivalent nonlocally related PDE system.

Nonlocally related PDE systems:

@ Solution set is equivalent to that of the given system.
o One-to-many solution set correspondence (“potential variables”).

@ Jet spaces are not isomorphic.

Common examples: potential symmetries (following from a conservation law);
subsystems (obtained by exclusion of dependent variables).
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Nonlocally Related Systems: an Example

@ A nonlinear diffusion equation on u(x, t):

U] = | ue = (L)), =0} L'(u) = K(u).

@ Two conservation laws:

De(u) — Dy ((L(u))x) =0,  De(xu)— Dy (X(L(u))x - L(u)) =o.

o Potential system UV/[u, v]: { ‘\:x f ;,(u)u
t — x -
dx = XU,

o Potential system UA[u, a: { a0 = xK (u)uyx — L(u)
t = x — :

Vx = U,
; vi = K(u)u
o Potential system UVA[u, v, a: t _ XLE ),
X = ’
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Nonlocally Related Systems: an Example

o Forms of point symmetries of U[u]:

X =€&(x, t, u) +T(X t,u)— 4 + n(x, t, u)a2

ot

o Point symmetries of UV[u, v]:

Y = «S(xtuv)a—|—7'(xtuv)a+17(xtuv) —l—czb(xtuv)g

ot ov’
@ Point symmetries of UA[u, a:
0 0 0 0
Z = £(X7 t,u, a)& + T(X’ t,u, a)a + n(Xy t,u, a)a + w(x7 t,u, a)a

o Point symmetries of UVA[u, v, a]:

W = €, t,v, ) 76, £ 0, v, )

0 7] 0
+n(x, t, u, v,a)a—l—é(x t,u, v, a) +1/)(x t,u, v, a)aa
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Nonlocally Related Systems: an Example

@ Point/local symmetry classifications of the given and potential systems may differ.

o A local symmetry of any PDE system can correspond to a nonlocal symmetry of a
another, nonlocally related PDE system within the tree:

UVA[u,v,a]

UV[u,v] UA[u,a]

U[u]

@ There are further ways to obtain nonlocally related PDE systems.
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Nonlocally Related Systems: an Example

o Symmetries of U[u] = us — (L(u)),, = 0 for L(u) = u"""/(n+ 1), for all n:

0 0
Xp= —, Xp=—
1 8X7 2 8t’
0 0
X3 —Xa +2ta,
0 0
X4 = nta + Ua.

@ An extra point symmetry of UVA[u, v, a], for n = —2/3:

— a nonlocal symmetry of Ulu].

o Nonlocal symmetries arise in classifications for systems with essential arbitrary
elements.
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Nonlocal Symmetries

@ Nonlocal symmetries of a given PDE system are computed as local symmetries of
nonlocally related PDE systems.

@ Various important examples exist, including linearizations through nonlocal
symmetries, and infinite Galas-Bogoyavlenskij symmetries of MHD equations.

@ More details, discussion, and examples: see the book Applications of Symmetry
Methods to Partial Differential Equations (2010) by Bluman, Cheviakov, and Anco.
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