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2016

Truncated shifted Yangians are a family of algebras which are conjectured to quantize slices to Schubert

varieties in the affine Grassmannian. In this thesis we study the highest weight theory of these algebras,

and explore connections with Nakajima quiver varieties and their cohomology. We give a conjectural

parametrization of the set of highest weights in terms of product monomial crystals, which are related

to Nakajima’s monomial crystal. In type A we prove this conjecture.

Our main tool in describing the set of highest weights is the B–algebra, which is a non-commutative

generalization of the notion of torus fixed-point subscheme. We give a conjectural presentation for this

algebra based on calculations using Yangians, and show how this presentation admits a natural geometric

interpretation in terms of the equivariant cohomology of quiver varieties. We conjecture that this gives

an explicit presentation for the equivariant cohomology ring of the Nakajima quiver variety of a finite

ADE quiver, and show that this conjecture could be deduced from a special case. We give a proof of this

conjecture in type A. We also describe a common thread between all of the above objects: the existence

of (co)product maps.

This work can be thought of in the context of symplectic duality: slices to Schubert varieties in the

affine Grassmannian are expected to be symplectic dual to Nakajima quiver varieties. The relationship

between B–algebras and equivariant cohomology is part of a general conjecture of Nakajima for sym-

plectic dual varieties. These ideas represent a first approximation to expected connections between the

category O’s for a symplectic dual pair of varieties.
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Chapter 1

Introduction

The highest weight theory of semisimple Lie algebras is important in many areas of mathematics, and for

good reason: it allows for the classification of finite dimensional irreducible representations, and thereby

a complete description of the ubiquitous category of finite dimensional representations. In this thesis we

will consider the highest weight theory of a more exotic family of algebras, which ultimately will have

multiple ties back to this foundational Lie algebra case.

Let us further discuss the highest weight theory of a semisimple Lie algebra, as this will provide a

framework for our more general setting. We can enlarge our scope from the finite dimensional modules

by considering the set of Verma modules, or the even larger category O of Berstein-Gelfand-Gelfand.

The combinatorics of the set of simple objects in category O is simple: they are in bijection with highest

weights, which correspond to elements of the dual space h∗ of a Cartan subalgebra.

This combinatorial question becomes more interesting upon restricting our attention to a block of

category O, where one demands that the centre of Ug acts by a fixed generalized central character. Here,

there are only finitely many simple objects, parametrized by an orbit of the Weyl group acting on h∗ via

the “dot action”. In particular, the number of simple objects crucially depends on the choice of central

character.

Although this combinatorial picture is simple, category O and its blocks have a very rich structure.

One of the most powerful tools in this study is the localization theorem of Beilinson and Berstein, which

moves us into the setting of D–modules on the flag variety G/B. Sheaf-theoretic techniques then permit

the description of various categorical properties of interest in representation theory.

We can add another piece to this story by thinking of the enveloping algebra Ug – or rather, its

quotient Aξ = Ug/Zξ by a central ideal – as a deformation quantization of the coordinate algebra of the

nilpotent cone N ⊂ g∗, with its natural Kostant-Kirillov-Souriau Poisson structure. This is compatible

with the above D–module picture: the sheaf Dξ of twisted differential operators on G/B has Aξ as

its algebra of global sections. This connection between Dξ, which can be thought of as a deformation

of T ∗G/B, and Aξ comes from the moment map µ : T ∗G/B −→ N . The localization theorem above

describes the relationship between Dξ–modules and Aξ–modules.

1
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1.1 Generalizing the setting

A modern idea in representation theory is to generalize the above picture by replacing the nilpotent cone

with a conical symplectic singularity X. Instead of studying Ug, we consider a deformation quantization

of its coordinate ring C[X]. There is a family Aξ of such algebras, roughly parametrized by ξ ∈ H2(X̃,C),

where X̃ → X is a resolution of singularities.

Given the additional data of a Hamiltonian C×–action on X̃, one can define a highest weight theory

and category O for Aξ, which consists of modules satisfying certain finiteness conditions. Many well-

studied structures and properties of the BGG category O carry over to this setting, and these categories

have been the subject of much recent research [BLPW14], [BPW12], [BDGH16], [Los15].

Let us return to the question of the combinatorics of highest weights. In the case of a conical

symplectic resolution, it is shown in [BLPW14, Proposition 5.3] that for generic ξ there is a bijection(
Highest weights

for Aξ

)
∼−→ X̃C× (1.1)

1.2 Symplectic duality

A very interesting aspect of the theory outlined above is symplectic duality, a conjecture stating roughly

that conical symplectic singularities should arise in pairs X and X !. Moreover, this duality should relate

the categories O and O! for their quantizations in a very specific way [BLPW14], [BDGH16].

Symplectic duality has motivation coming from physics, where the pairs X and X ! should arise as the

Coulomb and Higgs branches of the moduli space of vacua in a 3d N = gauge theory [Nak15b], [BDG15].

Mathematically, this is a developing story. While the description of the Higgs branch is known, it is

only recently that a mathematical construction of the Coulomb branch was proposed, by Braverman,

Finkelberg and Nakajima [Nak15b], [BFN16b].

Returning once again to the topic of highest weights, one expected aspect of symplectic duality is

the following: for each (integral) choice of ξ there should be a corresponding C×–action on a resolution

X̃ ! −→ X !, and a bijection (
Highest weights

for Aξ

)
∼−→ π0

(
(X̃ !)C

×)
(1.2)

This idea can be upgraded to an isomorphism B(Aξ) ∼= H∗C×(X̃ !) conjectured by Nakajima, where B(Aξ)
is the B–algebra [KTW+15, §1.6]. This conjecture generalizes one of Hikita [Hik15].

1.3 Our setting in this thesis

In this thesis we consider X = Grλµ a transverse slice to a Schubert variety in the affine Grassmannian

of a simple algebraic group G of simply-laced type. These varieties are examples of conical symplectic

singularities [KWWY14, Theorem 2.7].

The spaces Grλµ, and more generally the Schubert varieties Grλ, are important in geometric repre-

sentation theory. In particular, they are key players in the celebrated geometric Satake equivalence of

Ginzburg [Gin00] and Mirkovic-Vilonen [MV07] (see also [Zhu16]). The geometry of Grλµ is strongly

related to the weight space V (λ)µ of the representation of highest weight λ for the Langlands dual g∨.
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The affine Grassmannian can also be considered as a partial flag variety for the affine Kac-Moody group

Ĝ, and the Grλ are its Schubert varieties. From this point of view, there are natural connections between

the spaces Grλµ and affine Demazure modules (and Weyl modules) for the current algebra.

The slice Grλµ is the Coulomb branch of a “quiver gauge theory’ [BFN16a], while the corresponding

Higgs branch is the Nakajima quiver varietyM(λ, µ), or rather, its affinizationM0(λ, µ). In particular,

the symplectic dual of X = Grλµ is expected to be X ! = M0(λ, µ). Nakajima quiver varieties are also

of great importance in geometric representation theory. For example, they can be used to geometri-

cally construct representations of Lie algebras [Nak98], quantum affine algebras [Nak01a] and Yangians

[Var00]. We note that in the gauge theory context, Grλµ is related to a space of singular monopoles on

R3 [BDG15], [Nak15a, §5(iii)].

1.4 Overview of results

Inspired by the above considerations, the main aim of this work is to describe the set of highest weights

for the algebras Y λµ (R), and connect it with the Nakajima quiver variety M(λ, µ). More generally, we

aim to relate the B–algebra of Y λµ (R) and the (equivariant) cohomology of M(λ, µ).

Many of the results of this thesis come from joint work with J. Kamnitzer, D. Muthiah, P. Tingley,

B. Webster, and O. Yacobi [KWWY14],[KTW+15],[KMW16], [KMWY], [WWY]. In particular, a large

portion of the content in this thesis follows [KTW+15]. Any mistakes are mine.

In Chapter 2 we follow [KTW+15, §2], and discuss the product monomial crystal B(λ,R). This set

plays a key combinatorial role later: we conjecture that it parametrizes highest weights for Y λµ (R).

In Chapter 3, we give an overview of the theory of deformation quantizations of algebras. We also

define the notion of B–algebra, and give some its properties. We end by describing the conjectures

of Hikita and Nakajima mentioned above, framed in the context of recent work on Coulomb branches

[BFN16a].

Chapter 4 provides an overview of Yangians and the affine Grassmannian. We show in §4.1.4 how

to construct a coproduct for shifted Yangians, and prove that this descends to a coproduct for shifted

Yangians in type A. We describe how this coproduct is related to the geometry of slices in the affine

Grassmannian, in §4.2.6 and Theorem 4.2.20. In §4.3, we describe certain elements called “lifted minors”

of the Yangian which are important to our study of highest weights and description of B–algebras,

following [KTW+15, §5.3].

In Chapter 5 our goal is to compute the B–algebra for Y λµ (R). We give partial results in this

direction as well as a conjectural description Bλµ(R) of this B–algebra. In Corollary 5.4.3 we prove that

this conjectural description is correct in type A. In Theorem 5.2.5, we give a presentation bλµ for the

fixed-point subscheme of a scheme Gλµ defined in [KWWY14]. It is conjectured that Gλµ = Grλµ, which

motivates:

Conjecture A. For the explicitly presented algebras bλµ and Bλµ defined in Definition 5.2.6 and §5.4.1,

we conjecture that:

(a) There is an isomorphism between bλµ and the coordinate ring of the fixed point subscheme (Grλµ)C
×

,

(b) For any R, the specialization Bλµ(R) of Bλµ is isomorphic to the B–algebra of Y λµ (R).

Theorem B. Conjecture A holds in type A.
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In §5.4.2, we show that our algebras Bλµ also have natural coproduct maps.

Following this, in Chapter 6 we show that a variation on our conjectural B–algebra has points in

bijection with the elements B(λ,R)µ of weight µ in the product monomial crystal B(λ,R), following

[KTW+15, §6]. We show that the “product” structure on the product monomial crystal corresponds to

the coproduct on B–algebras.

In Chapter 7, we change gears, and overview the theory of Nakajima quiver varieties. Using results

of Maffei [Maf02], we construct vector bundles on quiver varieties (see Definition 7.2.11) and describe

their classes in equivariant K-theory. We end the chapter by discussing graded quiver varieties and

their connection to the product monomial crystal B(λ,R), following [KTW+15, §7]. By combining these

results with those of §5 and §6, we can make the following formulation:

Theorem C. There is an explicitly presented algebra B̃λµ(R), and bijections

MaxSpec B̃λµ(R) ←→ B(λ,R)µ ←→ π0

(
M(λ, µ)C

×)
Moreover in type A, this provides a bijection(

Highest weights

for Y λµ (R)

)
∼−→ π0

(
M(λ, µ)C

×)
,

as predicted by equation (1.2).

In Chapter 8 we combine the results from the previous chapters, and compare our conjectural B–

algebras with the equivariant cohomology of Nakajima quiver varieties. Our two main theorems show

that our conjectural B–algebra surjects onto the equivariant cohomology ring (Theorem 8.3.1), and give

a criteria for proving that this surjection is an isomorphism (Theorem 8.3.7):

Theorem D. The Kirwan maps for the quiver variety factor:

H∗GV (pt) H∗GV ×GW×C×(pt)

bλµ H∗
(
M(λ, µ)

)
Bλµ H∗GW×C×

(
M(λ, µ)

)
The kernels of both vertical arrows are descibed explicitly using vector bundles on M(λ, µ).

If the bottom arrow of the left diagram is an isomorphism, then so is the bottom arrow of the right

diagram. In particular, this holds in type A, giving explicit presentations for these cohomology rings.

We also prove that this conjecture is compatible with Theorem C (§8.3.2), and that our coproduct on

Bλµ agrees with Nakajima’s geometric coproducts for quiver varieties (§8.3.1).

Remark. The case when G is type A plays a special role throughout this work. In this case, the RTT

presentation for the Yangian in type A gives us sufficient algebraic power to completely compute the

B-algebra (see Corollary 5.3.15). A suitable replacement is currently lacking in other types. In addition,

work in progress [KMWY] shows that the truncated shifted Yangian Y λµ (R) is an honest quantization of

Grλµ in this case, giving us additional leverage.
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In fact, in this setting it is also known that the slice Grλµ is isomorphic to a slice S ∩O to a nilpotent

orbit closure in glN [MV03] (as well as to a Nakajima quiver variety of type A). The varieties S ∩O are

quantized by parabolic W–algebras, as studied by Losev [Los12] and Webster [Web11]. In forthcoming

work with Webster and Yacobi, we compare our construction below with the aforementioned works, using

the work of Brundan-Kleshchev relating W–algebras and Yangians [BK06].

1.5 Future directions

1.5.1 Categorification

We outline some goals and expected results regarding the category O for Y λµ (R). Let us denote this

category by Oλµ(R) for brevity. In increasing complexity:

(a) At the level of crystals: The union⊔
µ

(
Highest weights for Y λµ (R)

)
,

(or equivalently, the union over µ of the set of equivalence classes of simple objects in Oλµ(R))

should have the structure of a g∨–crystal, with µ labelling the weight. Moreover, the highest weight

elements of this crystal should correspond to finite-dimensional simple modules. We explored this

idea in [KTW+15], and in the current thesis.

(b) At the level of representations: The sum of Grothendieck groups⊕
µ

K0

(
Oλµ(R)

)
should have the structure of a g∨–representation V (λ,R), with µ labelling the weight spaces.

(c) At a categorical level: The product of (derived) categories
∏
µOλµ(R) should carry a categorical

g∨–action, as overviewed e.g. in [Kam14].

These three expectations should be compatible, in the sense that (b) decatorifies (c) via taking Grothendieck

rings, while (a) is a combinatorial skeleton for (b). In particular, B(λ,R) should label a basis for V (λ,R).

Following the symplectic duality narrative, it is our goal to relate all of the above structures with the

Nakajima quiver varietyM(λ, µ). Our crystal B(λ, µ) works towards this goal, by Theorem 7.3.4. Based

on this crystal’s definition, it is also reasonable to conjecture that the desired representation V (λ,R)

should be ⊕
µ

H0
(
λ, µ,R)

whereM(λ, µ,R) is the graded quiver variety defined in §7.3.1, and g∨ acts by convolution as in [Nak98].

However, it is not clear yet how to relate this representation to the categories Oλµ(R).

1.5.2 Going outside finite ADE

Some of the discussion in this thesis makes sense in greater generality than finite ADE type. In particular,

Yangians and Nakajima quiver varieties can be associated to any finite graph without edge loops (a.k.a.
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symmetric generalized Cartan data). Likewise, one can attempt to define analogues of the varieties Grλµ
in this generality, although this is quite complicated [BF10].

It would be interesting to better understand any analogous connections between these spaces and

algebras. For example, one could hope to present cohomology rings for these Nakajima quiver varieties in

greater generality. One obstacle in mimicking our present construction in this generality is that Kirwan

surjectivity is not known to hold outside of specific cases.

1.5.3 Quantum cohomology

Hikita and Nakajima’s conjectures (see §3.4) tell us a certain explicit way to realize cohomology rings.

It is natural to ask: is there an analogous construction which yields the quantum cohomology?
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1.6 Notation and Conventions

All vector spaces and varieties/schemes will be over the field C, and ⊗ denotes ⊗C. All algebras will be

associative and unital, and we will denote the coordinate algebra of an affine scheme M by O(M).

Let G be a connected simple algebraic group of simply-laced type, and let g be its Lie algebra.

Denote its Cartan matrix by A = (aij)i,j∈I where i, j run over the nodes I of its Dynkin diagram. Since

G is simply-laced, A is a symmetric matrix. Write i ∼ j if i and j are connected in the Dynkin diagram.

Fix a maximal torus and Borel T ⊂ B ⊂ G, with corresponding Lie algebras h ⊂ b ⊂ g. Denote the

weight and coweight lattices by

X = Hom(T,C×), X∨ = Hom(C×, T ),

where we work in the category of algebraic groups. Denote their canonical pairing 〈·, ·〉 : X∨×X −→ Z.

Denote the set of roots by ∆ = ∆+ t∆− and the root lattice by Q. Similarly denote the coroots and

coroot lattice by ∆∨ ⊂ Q∨. We can identify Q ⊂ h∗ and Q∨ ⊂ h. Fixing a choice of simple roots

Π = {αi}i∈I , we have Q =
⊕

i∈I Zαi. There is a partial order on weights defined by

λ ≥ µ ⇐⇒ λ− µ ∈
⊕
i∈I

Z≥0αi

and similarly for coweights.

Let W = NG(T )/T be the Weyl group, generated by the simple reflections si for i ∈ I. For a

(co)weight λ, we write λ∗ = −w0(λ), where w0 ∈W is the longest element.

Choose Chevalley generators for g, denoted fi, hi, ei for i ∈ I. There is a unique nondegenerate

g–invariant symmetric bilinear form 〈·, ·〉 on g, such that

〈hi, hj〉 = aij , 〈ei, fj〉 = δij

The restriction of 〈·, ·〉 to h is nondegenerate, so it identifies h ∼= h∗. Because G is simply-laced, this

isomorphism identifies the set of roots and coroots (as well as Q and Q∨). Moreover, if we define the

absolute weight lattice

P = {λ ∈ h∗ : (λ, α) ∈ Z, ∀α ∈ Q} ,

then we can and will identify X,X∨ ⊂ P . Under this identification the forms 〈·, ·〉 coincide, hence

our abuse of notation. The distinction between the lattices X,X∨ and P will only be relevant when

discussing the affine Grassmannian in Chapter 4, and the above identification greatly simplifies notation

elsewhere.

The lattice P has Z–basis given by the fundamental weights {$i}i∈I , which are defined by 〈$i, αj〉 =

δij . Recall that a weight λ ∈ P is called dominant if 〈λ, αi〉 ≥ 0 for all i ∈ I, and regular if 〈λ, α〉 6= 0

for all α ∈ ∆. Denote the set of dominant weights by P+, and the set of regular weights by P reg.

Remark 1.6.1. Throughout this thesis, we will frequently consider a pair λ, µ ∈ P , with λ ∈ P+ and

λ ≥ µ. As a convention, we will denote

λ =
∑
i∈I

λi$i, µ =
∑
i∈I

µi$i, λ− µ =
∑
i∈I

miαi,
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so λ ≥ µ means that all mi ≥ 0.

This data will be relevant in several contexts, and should generally be thought of as specifying the

weight space V (λ)µ in the irreducible g–representation of highest weight λ.

Remark 1.6.2. The assumption that G is simply-laced is not essential in some parts of what follows.

However, it simplifies certain definitions and is critical for our discussion of quiver varieties.



Chapter 2

Monomial crystals

2.1 g–crystals

A g–crystal is a combinatorial object, consisting of a set B along with maps

wt : B −→ P,

εi, ϕi : B −→ Z≥0,

ẽi, f̃i : B −→ B ∪ {0}

satisfying certain axioms. Intuitively, the set B should be thought of as labelling a basis V for a

representation of the Lie algebra g, and the Kashiwara operators ẽi, f̃i should be thought of as

corresponding to the action of the Chevalley generators ei, fi on V .

This intuition is not completely accurate: there are many crystals that do not correspond to repre-

sentations of g. However, for each dominant weight λ ∈ P there is a corresponding crystal B(λ), coming

from a crystal basis of the representation Vq(λ) of Uq(λ) (although there are other characterizations). A

crystal B is called normal if it is isomorphic to a disjoint union of crystals B(λ) (for varying λ).

For more details on the theory of crystals and its connections to representation theory, we refer the

reader to Joseph [Jos95, Section 5.2].

2.2 The monomial crystal

We let Cλ =
∏
iCλi/Si, the set of all collections of multisets of sizes (λi)i∈I . A point in Cλ will be

denoted by R = (Ri)i∈I where each Ri is a multiset of size λi, and it will be called a set of parameters

of weight λ.

Fix a bipartition I = I0 ∪ I1 of the Dynkin diagram of g (where 0, 1 ∈ Z/2). We call vertices in I0
even and those in I1 odd. Thus, we say that i ∈ I and k ∈ Z have the same parity if i ∈ Ik.

We say that R is integral, if for all i, all elements of Ri are integers and have the same parity as

i. So an integral set of parameters consists of a multiset of λi even integers for every i ∈ I0 and λi odd

integers for every i ∈ I1.

9
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2.2.1 Definition of the monomial crystal

Let B denote the set of all monomials in the variables yi,k, for i ∈ I and k ∈ Z of the same parity. Let

zi,k =
yi,kyi,k+2∏
j∼i yj,k+1

(2.1)

Given a monomial p =
∏
i,k y

ai,k
i,k , let

wt(p) =
∑
i,k

ai,k$i εki (p) = −
∑
l≤k

ai,l ϕki (p) =
∑
l≥k

ai,l

and

εi(p) = max
k

εki (p) ϕi(p) = max
k

ϕki (p)

In each case, the max is taken over those integers k of the same parity as i.

We can define the Kashiwara operators on this set of monomials by the rules:

ẽi(p) =


0, if εi(p) = 0,

zi,kp,
otherwise, where k is the smallest integer of the same parity as i

such that εki (p) = εi(p)

f̃i(p) =


0, if ϕi(p) = 0

z−1
i,k−2p,

otherwise, where k is the largest integer (of the same parity as i)

such that ϕki (p) = ϕi(p)

The set B with these operations is called the monomial crystal. The following result is due to

Kashiwara [Kas03, Proposition 3.1].

Theorem 2.2.1. B is a normal crystal.

2.3 Product monomial crystals

For any c ∈ Z and i ∈ I of the same parity, the monomial yi,c ∈ B is clearly highest weight and we

can consider the monomial subcrystal B($i, c) generated by yi,c. Since yi,c has weight $i, we see that

B($i, c) ∼= B($i).

The fundamental monomial crystals for different c all look the same: they differ simply by translating

the variables. In fact, for any complex number c ∈ C, we can consider B($i, c), the crystal obtained by

translating yi,k 7→ yi,k+c−c0 all variables appearing in all monomials in B($i, c0) (for c0 an integer of

the same parity as i). This crystal B($i, c) does not sit inside B, but we will need to use it on occasion

in this paper.

Given a dominant coweight λ and an integral set of parameters R of weight λ as above, we define

the product monomial crystal B(λ,R) by

B(λ,R) =
∏

i∈I,c∈Ri

B($i, c)

In other words, for each parameter c ∈ Ri, we form its monomial crystal B($i, c) and then take the
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product of all monomials appearing in all these crystals. The order of the product is irrelevant because

taking products of monomials is commutative.

Theorem 2.3.1 ([KTW+15, Theorem 2.1]). B(λ,R) is a subcrystal of B. In particular it is a normal

crystal. Moreover, there exists embeddings B(λ) ⊆ B(λ,R) ⊆ ⊗iB($i)
⊗λi .

2.3.1 Multisets and monomials

Given a collection of multisets S = (Si)i∈I , which we assume satisfy the same parity conditions as above,

we can define

yS =
∏

i∈I,k∈Si

yi,k, zS =
∏

i∈I,k∈Si

zi,k.

From the definition of the monomial crystal, it is easy to see that every monomial p in B(λ,R) is of

the form

p = yRz
−1
S =

∏
i,k∈Ri

yi,k
∏
i,k∈Si

∏
j∼i yj,k+1

yi,kyi,k+2
(2.2)

for some S. Thus an alternative combinatorics for labelling elements of the monomial crystal are these

collections of multisets S.

Remark 2.3.2. For any p ∈ B(λ,R), S is uniquely determined. In fact for any collections of multisets

S and S′, zS = zS′ implies S = S′ .

2.3.2 Weyl orbit of the highest weight element

Consider a set of parameters R of weight λ. Since there is a unique highest weight element

pλ := yR ∈ B(λ,R)λ,

it follows from Theorem 2.3.1 that for any extremal weight wλ ∈ Wλ, there is a unique element pwλ ∈
B(λ,R) of weight wλ. There is a simple inductive expression for pwλ, which we will prove in §7.3.3 using

graded quiver varieties.

Proposition 2.3.3. Let i ∈ I be such that siwλ < wλ. If pwλ =
∏
j,k y

aj,k
j,k , then

psiwλ = pwλ ·
∏
k

z
−ai,k
i,k−2

2.4 The case of sl2

For g = sl2, the fundamental monomial crystal consists of two elements

B($, c) : yc
f̃−→ y−1

c−2

A weight is simply an integer λ ≥ 0, a set of parameters R in this case is a single multiset of size λ. Let

us number its elements c1, . . . , cλ. The crystal B(λ,R) admits a surjection from the set {±}λ of tuples:

a + in spot j corresponds to choosing ycj ∈ B($, cj), and a − corresponds to choosing y−1
cj−2 ∈ B($, cj).
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We then multiply these elements together to produce an element of B(λ,R). Note that B(λ,R) is a set:

two tuples may produce the same monomial, and these are not distinguished in B(λ,R).

As described in the previous sections, elements p ∈ B(λ,R) can be written as p = yRz
−1
S for some

(single) multiset S. We will see later in §6.3 that this crystal can be described as follows:

B(λ,R) =
{
p = yRz

−1
S ∈ B : S + 1 ⊂ R

}
or in other words, “flags” of multisets (see also [KTW+15, Example 2.6] for a more general case).



Chapter 3

Deformation quantization

3.1 Overview

Let A be a Z≥0–graded algebra. By a deformation of A, in this thesis we will mean one of two things:

(a) A filtered deformation: a filtered algebra A =
⋃
n∈Z≥0

A≤n such that the associated graded

grA ∼= A,

(b) A C[~]–deformation: a Z≥0–graded C[~]–algebra A~ such that A~/~A~ ∼= A,

These two definitions are essentially equivalent: from A we can construct the Rees algebra,

A~ = Rees(A) =
⊕
n∈Z≥0

~nA≤n ⊂ A[~],

and from A~ we can take A = A~/(~ − 1)A~. In general, deformations of A can be classified using

Hochschild cohomology.

Let A be commutative, and let A~ be a C[~]–deformation of A. Then A naturally acquires a Poisson

bracket, by letting

{a, b} :=
1

~
[a, b] mod ~

where a, b ∈ A~ are any lifts of a, b. In this case, we call A~ almost-commutative, in the sense that

it is commutative mod ~.

3.2 Conical symplectic singularities

In this section we briefly overview the technical framework for deformation quantization of a class of

varieties relevant to our discussion, following [Los16].

Let X be a symplectic singularity. This means that:

(1) X is a normal Poisson variety,

(2) the regular locus Xreg is symplectic,

(3) for some (equivalently, any) resolution X̃ −→ X, the pull-back of the symplectic form ωreg from

Xreg extends to a closed form on X̃.

13
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We will further assume that X is conical, meaning that there is a grading O(X) =
⊕

n∈Z≥0
O(X)n

with O(X)0 = C, and an integer d ≥ 1 such that {f, g} ∈ O(X)n+m−d for f ∈ O(X)n, g ∈ O(X)m and

all n,m. Geometrically, this corresponds to an action of S = C× on X, which is contracting to a unique

fixed point.

Deformation quantizations of O(X) are classified by the invariants H2(X̃,C)W with respect to the

Namikawa-Weyl group W , by [Los16, Theorem 3.4]. This generalizes extensive previous work on the

case of conical symplectic resolutions [BPW12], [BLPW14], [Los12].

3.2.1 Category O

In the setting of the previous section, there are two competing notions of category O: a geometric one

and an algebraic one. These two categories are equivalent in many cases [BLPW14, §3]. In this paper

we work with quantizations of coordinate rings, where the algebraic version of O is more appropriate.

Let A be a Z–graded algebra. Denote the grading by A =
⊕

k∈ZAk, so we have Ai · Aj ⊂ Ai+j .
Consider A≥0 :=

⊕
k≥0Ak.

Definition 3.2.1. The algebraic category O for A is defined to be the full subcategory of finitely

generated A–modules for which A≥0 acts locally finitely.

In the definition, A≥0 acts locally finitely on an A–module M means that for any v ∈ M , the

submodule A≥0 · v is finite dimensional.

Remark 3.2.2. In the case when A = Ug for g a semisimple Lie algebra, the above definition does not

quite agree with the BGG category O. Recall that in BGG category O we demand that Ub acts locally

finitely and Uh act semisimply. By using the principal gradation of Ug, where deg fi = −1,deg hi =

0,deg ei = 1, we come close to this definition but lose the semisimplicity assumption.

3.3 B-algebras

Let A =
⊕

k∈ZAk be a Z–graded algebra. The following definition appeared in [BLPW14, §5.1] and

can be thought of as a generalization of the notion of C×–fixed points, see Section 3.3.2 below.

Definition 3.3.1. The B-algebra of A is defined to be the algebra B(A) := A0/
∑
k>0A−kAk

Note that
∑
k>0A−kAk is always an ideal in A0, so this is indeed an algebra.

Remark 3.3.2. More generally let A be a Z–graded S–algebra, where S is a commutative ring which

we give degree zero. Then we can define an S–algebra B(A) as above, and most of the discussion below

goes through. We will stick to S = C for simplicity.

Given A and A′ two such algebras, recall that the tensor product A ⊗ A′ has a natural algebra

structure defined by

(a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b1b2

Moreover, A⊗A′ has a Z-grading with

(A⊗A′)k =
⊕
i+j=k

Ai ⊗A′j (3.1)
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Lemma 3.3.3. Let A,A′ be as above.

(a) If ϕ : A → A′ is a homomorphism of graded algebras, then the restriction ϕ : A0 → A′0 induces a

homomorphism

B(ϕ) : B(A)→ B(A′)

If ϕ is surjective, then so is B(ϕ).

(b) The inclusion A0 ⊗A′0 ↪−→ (A⊗A′)0 induces a natural isomorphism

B(A)⊗B(A′) ∼= B(A⊗A′)

3.3.1 Relationship to highest weights

Let A be a Z–graded algebra, and let M be a graded A–module. Let us call M a highest weight

module if there is a homogeneous element v ∈M0 such that

(1) v is a cyclic vector (i.e. M = A · v),

(2) M0 = Cv,

(3) Akv = 0 for all k > 0.

For a highest weight representation M , the algebra B(A) naturally acts on the line Cv. This induces

a homomorphism of algebras χ : B(A) −→ C, by the equation

a · v = χ(a)v, ∀a ∈ A0

Conversely, given a homomorphism χ : B(A) −→ we can construct a corresponding highest weight

module as follows. We can consider C as a module over A≥0 =
⊕

k≥0Ak via the composition

A≥0 −� A0 −� B(A)
χ−→ C

and form the induced A–module

M(χ) := A⊗A≥0
C

This module is in category O for A, and is called a Verma module (or standard module). It is

the universal highest weight module corresponding to χ, in the sense that all other such modules are

quotients of M(χ).

3.3.2 The commutative case

Assume that A is a Z–graded commutative algebra. In this case, there is an alternative description of

the B(A) which is of a geometric flavour. Indeed, a Z–grading of A corresponds to a C×–action on

X = Spec(A). In this setting we can consider the fixed point subscheme, which is the spectrum of the

coinvariant ring,

XC× = Spec
(
A/
〈
za− a : z ∈ C×, a ∈ A

〉)
,
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where z ∈ C× acts on Ak as multiplication by zk. Equivalently, we can say that the coordinate ring

O
(
XC×) = A/

〈
za− a : z ∈ C×, a ∈ A

〉
= A/〈A 6=0〉

where 〈A 6=0〉 is the ideal generated by all homogeneous elements of non-zero weight. This is a special

case of the general notion of fixed-point subscheme, see Fogarty [Fog73].

Lemma 3.3.4. If A is commutative, then B(A) ∼= O
(
XC×).

3.3.3 The almost commutative case

We consider now the case when A is an almost commutative algebra. More precisely, we assume that:

(1) A =
⊕

k∈ZAk is Z–graded,

(2) A =
⋃
n∈Z≥0

FnA has a increasing filtration by graded subspaces, with F0A = C,

(3) the associated graded A := grF A is commutative.

Then A is naturally bi-graded. In geometric terms, we can think that X = Spec(A) has a pair of

commuting C×–actions, and is conical with respect to one of them. Following [BLPW14], let’s denote

the C×–action corresponding to (1) by T, and the conical C×–action corresponding to the filtration (2)

by S.

We will want to consider B–algebras with respect to the T–grading (1). B(A) naturally inherits the

quotient filtration from A0 =
⋃
n≥0 (FnA)0.

The next result is a variation on [BLPW14, Proposition 5.1]:

Lemma 3.3.5. (a) There is a surjection B(A) −� grB(A).

(b) If A is finitely generated and XT consists of finitely many closed points, then B(A) is finite di-

mensional.

Proof. There is a natural surjection from grA0 = A0 onto grB(A), and
∑
k>0A−kAk lies in its kernel.

This proves (a). For (b), we claim that XT has a single closed point: the unique fixed point of S. By the

previous section, B(A) defines the closed subscheme XT of X, and is therefore finite-dimensional since

X is finite-type. Now apply (a).

3.4 Conjectures of Hikita and Nakajima

In this section, we will sketch a general framework in which to describe the conjectures of Hikita and

Nakajima descibed in the introduction.

The recent work of Braverman, Finkelberg and Nakajima [BFN16b] provides a recipe for constructing

a pair X and X ! of varieties, given the data of a reductive group G and a representation N of G (we

use this redefinition of G locally to this section). It is expected that these varieties will be symplectic

dual to each other. Since this is not proven, we will content ourselves to list several properties of these

varieties.

The space X is called the Coulomb branch, and is defined as the spectrum of a certain algebra A;

we refer the reader to [BFN16b, §3(iv)] for the definition. Here are some of its properties:
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(a) It is a conical Poisson variety, and there is a natural deformation quantization A~ of its coordinate

ring,

(b) There are injections H∗G(pt) ↪→ A and H∗G×C×(pt) ↪→ A~ with (Poisson) commutative images,

(c) There is a natural action of the torus T = π1(G)∧ (Pontryagin dual) on A and A~, and the image

of H∗G(pt) has degree zero,

(d) Suppose that there is an exact sequence

1 −→ G −→ G̃ −→ GF −→ 1

such that N extends to a G̃–module. Then there is a natural family of deformation quantizations

of A, with base tF /WF :

H∗GF (pt) −→ A~,GF

whose image is central.

The space X !, called the Higgs branch, is defined to be the (complex) Hamiltonian reduction

T ∗N///0G. Assume that we have a resolution X̃ ! given by T ∗N///θG, for some GIT stability parameter

θ ∈ g∗.

Remark 3.4.1. In the case of a “quiver gauge theory”, it has recently been shown that X = Grλµ and

X ! =M0(λ, µ) [BFN16a]. In this sense, the discussion in this section generalizes the setup considered

in the rest of this thesis.

Since X̃ ! is a Hamiltonian reduction, there is a Kirwan map

H∗G(pt) −→ H∗
(
X̃∗
)

via the inclusion of the θ–semistable locus into T ∗N. We will assume that this map is a surjection. The

following is a generalization of a conjecture of Hikita [Hik15]:

Conjecture 3.4.2. There is an isomorphism of H∗G(pt)–algebras

O
(
XT
) ∼= H∗

(
X̃ !
)

By choosing a generic coweight ρ : C× → T , we get an equality XT = XC× . In particular O
(
XT
)

=

B
(
O(X)

)
, using the B–algebra notation as in §3.3.2.

Using ρ and B–algebras, we will try to generalize this statement to the deformation quantization

A~,GF . Assume there exists G̃ as in (d) above; let us make the simplification that G̃ = G ×GF . Then

GF acts on X ! and X̃ !, commuting with the action of C× which dilates the cotangent direction of T ∗N.

We will assume that the equivariant Kirwan map

H∗G×GF×C×(pt) −→ H∗GF×C×
(
X̃ !
)

is surjective. Based on a conjecture of Nakajima [KTW+15, §1.6], we propose the following:
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Conjecture 3.4.3. There is an isomorphism of H∗G×GF×C×(pt)–algebras

B
(
A~,GF

) ∼= H∗GF×C×
(
X̃ !
)

Finally, suppose that we take a coweight ξ : C× −→ GF , and extend this to ξ̃ : C× −→ GF × C×

by z 7→ (ξ(z), z). There is a corresponding action on X̃ !. There is also an induced map H∗GF×C×(pt)→
H∗C×(pt), and specialization

A~,ξ := A~,GF ⊗H∗GF×C∗ (pt) H
∗
C×(pt)

Let us further specialize ~ = 1, getting an algebra Aξ.

We can also make analogous specializations in equivariant cohomology. Assuming favourable cohomo-

logical properties (e.g. that X̃ ! is equivariantly formal for GF×C×), we have a restriction homomorphism

H∗GF×C×
(
X̃ !
)
⊗H∗

GF×C×
(pt) H

∗
C×(pt) ∼= H∗C×

(
X̃ !
)

where on the right C× acts via ξ̃. Furthermore, by restriction to the fixed-point locus we get

H∗C×
(
X̃ !
)
↪−→ H∗C×

(
(X̃ !)C

×)
Let us again specialize ~ to 1. Denote the connected components of the fixed-point locus by

(X̃ !)C
×

=
⊔
a

Ca

By choosing a point x ∈ Ca, we get inclusions pt = {x} ↪−→ Ca ↪−→ (X̃ !)C
×

, and induced maps

H∗
(
(X̃ !)C

×)
−→ H∗(Ca) −→ C

These maps correspond precisely to the maximal ideals of H∗
(
(X̃ !)C

×)
(see also §8.3.2 below).

Conjecture 3.4.4. Upon specializing as above, the map from Conjecture 3.4.3 is induces a bijection on

maximal ideals for B(Aξ) and H∗
(
(X̃ !)C

×)
:(

Highest weights for Aξ
)
∼−→ π0

(
(X̃ !)C

×
)

(3.2)

This can be reformulated in the following way. We have assumed that

X̃ ! = T ∗N///θG = µ−1(0)θ−ss/G

where µ−1(0)θ−ss denotes the set of θ–semistable points. It is standard GIT result that µ−1(0)θ−ss → X̃ !

is a principal G–bundle (e.g. [Gin09, §2.2]). For x ∈ µ−1(0)θ−ss, let us denote its image in X̃ ! by [x].

The homomorphism ξ̃ : C× → GF × C× yields a C×–action on µ−1(0)θ−−ss in addition to X̃ !.

If [x] is fixed by this action, then since µ−1(0)θ−ss → X̃ ! is a principal G–bundle there must exist a

homomorphism γ : C× → G, unique up to conjugation, such that

ξ̃(z) · x = γ(z) · x, ∀z ∈ C× (3.3)
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For a given γ, let X̃ !(γ) denote the set of points [x] ∈ (X̃ !)C
×

for which (3.3) holds. By analogy with

the quiver variety case studied by Nakajima (see §7.3.1 below), it seems reasonable to expect that the

X̃ !(γ) parametrize the connected components Ca of (X̃ !)C
×

. γ determines a map H∗G(pt) −→ C, and

this should correspond to the action of H∗G(pt) ↪→ Aξ on the highest weight vector corresponding to

X̃ !(γ) ∈ π0

(
(X̃ !)C

×
)

under (3.2).



Chapter 4

Yangians and the affine

Grassmannian

4.1 Yangians

Yangians first arose in the theory of integrable systems, but quickly spread their influence into other

areas of mathematics. They are Hopf algebras, arising as deformations of the enveloping algebras U(g[t])

of current algebras. We refer the reader to Chari and Pressley [CP95] for a more thorough overview of

this theory.

There are several presentations for the Yangian, each providing trade-offs by simplifying some aspects

of study while complicating others. Drinfeld’s original definition [Dri85] in terms of generators x, J(x)

permits explicit calculation of the Hopf algebra structure, but is not particularly well-adapted to studying

representation theory.

Drinfeld’s second presentation [Dri87] in terms of “loop generators” permits the study of represen-

tations and algebra structure, but has the drawback that the coproduct and antipode are very difficult

to write down explicitly. Since we will almost exclusively work with the algebra structure, it is this

presentation which we will make the most use of here (See §4.1.1 below).

Finally there is a third presentation, the so-called RTT presentation, which is historically the oldest

is has been extensively studied in type A [Mol07], as well as in other classical types [AMR06]. Here there

are few trade-offs: the full Hopf algebra structure is explicit. We exploit this presentation in §4.3.3 and

§5.3.3.

4.1.1 The Yangian and the shifted Yangian

The following algebra is a slight variation on Drinfeld’s second presentation of the Yangian (see Remark

4.1.2). It was obtained in [KWWY14] by applying Drinfeld-Gavarini duality (a.k.a the quantum duality

principle) to the ordinary Drinfeld Yangian.

20
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Definition 4.1.1. The Yangian Y of g is the C-algebra with generators E
(r)
i , F

(r)
i , H

(r)
i for i ∈ I,

r ∈ Z>0, and relations

[H
(r)
i , H

(s)
j ] = 0,

[E
(r)
i , F

(s)
j ] = δijH

(r+s−1)
i ,

[H
(1)
i , E

(s)
j ] = aijE

(s)
j ,

[H
(r+1)
i , E

(s)
j ]− [H

(r)
i , E

(s+1)
j ] =

aij
2

(H
(r)
i E

(s)
j + E

(s)
j H

(r)
i ),

[H
(1)
i , F

(s)
j ] = −aijF (s)

j ,

[H
(r+1)
i , F

(s)
j ]− [H

(r)
i , F

(s+1)
j ] = −aij

2
(H

(r)
i F

(s)
j + F

(s)
j H

(r)
i ),

[E
(r+1)
i , E

(s)
j ]− [E

(r)
i , E

(s+1)
j ] =

aij
2

(E
(r)
i E

(s)
j + E

(s)
j E

(r)
i ),

[F
(r+1)
i , F

(s)
j ]− [F

(r)
i , F

(s+1)
j ] = −aij

2
(F

(r)
i F

(s)
j + F

(s)
j F

(r)
i ),

i 6= j,N = 1− aij ⇒ sym[E
(r1)
i , [E

(r2)
i , · · · [E(rN )

i , E
(s)
j ] · · · ]] = 0

i 6= j,N = 1− aij ⇒ sym[F
(r1)
i , [F

(r2)
i , · · · [F (rN )

i , F
(s)
j ] · · · ]] = 0

where sym denotes symmetrization over the indices r1, . . . , rN .

Remark 4.1.2.

(a) This is a filtered version of the algebra appearing in [KWWY14, Theorem 3.5]: we have set ~ = 1.

The appropriate filtration on Y is defined by setting degX(r) = r, for X = Ei, Fi, Hi. The algebra

from [KWWY14] is the C[~]–algebra Y~ = Rees(Y ).

(b) As noted above, this is a slight modification of the Yangian as usually defined in the literature:

the generators are typically taken to be the elements x(r) := X(r−1) for r ∈ Z≥0. The filtration is

also typically taken to be defined by degNC x
(r) = r. Drinfeld proved that grNC Y is isomorphic to

the co-Poisson-Hopf algebra U(g[t]), and is essentially its unique filtered deformation (see [CP95,

§12.1]).

There is an embedding Ug ↪→ Y , as the subalgebra generated by the modes X(1). The principal

gradation of Y and Yµ is defined by the adjoint action of the element ρ =
∑
i∈I $i ∈ h ⊂ Y , or

explicitly by

degF
(r)
i = −1, degH

(r)
i = 0, degE

(r)
i = 1 (4.1)

The filtration from part (a) of the above remark is by graded subspaces.

We will use the notation Y >, Y 0, Y < to denote the (unital) subalgebras of Y generated by the E
(r)
i ,

the H
(r)
i , and the F

(r)
i , respectively. Denote Y ≥ = Y >Y 0 and Y ≤ = Y <Y 0. We will also sometimes

denote Y 0 = C[H
(•)
• ].

Definition 4.1.3. Let µ ∈ P+ be a dominant weight. The shifted Yangian Yµ is defined to be the

subalgebra of Y generated by all E
(r)
i , all H

(r)
i , and the elements F

(s)
i for s > µi.

Following [KWWY14, §3B], we define a PBW basis for Y as follows. Fix any order on the Dynkin

diagram. Then, for each positive root α we define α̌ to be the smallest simple root such that α̂ = α− α̌
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is a postive root. Inductively, we define

E(r)
α = [E

(r)
α̂ , E

(1)
α̌ ], F (r)

α = [F
(r)
α̂ , F

(1)
α̌ ]

This can be made compatible with Yµ ⊂ Y : for s ≤ 〈µ, α〉 we define F
(s)
α as above, while for s > 〈µ, α〉

we define

F (s)
α = [F

(s−〈µ,α̌〉)
α̂ , F

(〈µ,α̌〉+1)
α̌ ]

Part (1) of the following theorem is due to Levendorski’i [Lev93], while part (2) is [KWWY14,

Proposition 3.11].

Proposition 4.1.4.

(1) Ordered monomials in E
(r)
α , H

(r)
i , F

(r)
α , for r > 0, form a basis for Y ,

(2) Ordered monomials in E
(r)
α , H

(r)
i , F

(s)
α , for r > 0, s > 〈µ, α〉, form a basis for Yµ.

Y is a Hopf algebra, see for example Chapter 12 in [CP95]. The coproduct on Y is defined by

∆(X(1)) = X(1) ⊗ 1 + 1⊗X(1),

∆(H
(2)
i ) = H

(2)
i ⊗ 1 +H

(1)
i ⊗H

(1)
i + 1⊗H(2)

i +
∑
β>0

cβF
(1)
β ⊗ E(1)

β

for some constants cβ .

4.1.2 Generating series

In the theory of Yangians, as in the theories of loop algebras and affine Lie algebras, it is frequently

convenient (and efficient) to encode relations through the use of formal series.

For Y , we define the following series

Fi(u) :=
∑
r>0

F
(r)
i u−r, Hi(u) := 1 +

∑
r>0

H
(r)
i u−r, Ei(u) :=

∑
r>0

E
(r)
i u−r

These are elements of the space of formal Laurent series Y ((u−1)):

4.1.3 The truncated shifted Yangians

Let λ, µ ∈ P+ be such that λ ≥ µ. Thus we can write λ− µ =
∑
miαi for some mi ∈ Z≥0.

Given an integral set of parameters R = (Ri)i∈I of weight λ as in §2.2, consider the associated monic

polynomials

Ri(u) =
∏
c∈Ri

(u− 1
2c)

For each i ∈ I, define a series ri(u) ∈ 1 + u−1C[[u−1]] by the formula

ri(u) =
Ri(u)

uλi

∏
c∈Ri

(
u− 1

2c
) ∏j∼i(1−

1
2u
−1)mj

(1− u−1)mi
(4.2)
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Define elements A
(s)
i ∈ Yµ for i ∈ I, s ∈ Z>0 by the formula

Hi(u) = ri(u)

∏
j∼iAj(u−

1
2 )

Ai(u)Ai(u− 1)
(4.3)

where Ai(u) = 1 +
∑
s>0A

(s)
i u−s. By [GKLO05, Lemma 2.1], this uniquely determines the elements

A
(s)
i ∈ C[H

(•)
• ].

Definition 4.1.5. The truncated shifted Yangian Y λµ (R) is defined to be the quotient a the two-sided

ideal,

Y λµ (R) = Ỹµ/〈A(r)
i : i ∈ I, r > mi〉

Remark 4.1.6. Expressing Ai(u) explicitly in terms of Hi(u) is quite complicated. For example, consider

g = sl2. If we ignore the factor r(u), then we have

H(u) =
1

A(u)A(u− 1)

and the first few elements A(r) are

A(1) = − 1
2H

(1),

A(2) = − 1
2H

(2) + 3
8 (H(1))2 + 1

4H
(1),

A(3) = − 1
2H

(3) + 3
4H

(1)H(2) − 5
16 (H(1))3 + 1

2H
(2) − 3

8 (H(1))2

In fact, in this case A(u) satisfies a regular abelian difference equation:

A(u− 2) =
H(u)

H(u− 1)
A(u)

As such, when acting on any finite dimensional module for Y , the dependence of A(u) on H(u) is related

to the Γ–function [GL15, Section 4].

It is also interesting to consider a parametric version of the above construction. Let us denote

Ri(u) = uλi +R
(1)
i uλi−1 + . . .+R

(λi)
i

and consider the coefficients R
(s)
i are formal parameters. Consider the polynomial ring

Ỹµ := Y~,µ[R
(s)
i : i ∈ I, 1 ≤ s ≤ λi] = Y~,µ ⊗ C[R

(s)
i ]

Note the ~: we’ve denoted Y~,µ = Rees(Yµ) as in Remark 4.1.2(a). Define elements A
(r)
i ∈ Ỹµ by the

analogous equation

Hi(u) =
Ri(u)

uλi

∏
j∼i(1−

1
2~u

−1)mj

(1− ~u−1)mi

∏
j∼iAj(u−

1
2~)

Ai(u)Ai(u− ~)
(4.4)

and define the algebra

Y λµ = Ỹµ/〈A(r)
i : i ∈ I, r > mi〉 (4.5)

It can be thought of as a family of algebras over the base Cλ × C× = SpecC[R
(s)
i , ~], having Y λµ (R) as

its specialization at the point R× {1}.
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Y λµ is naturally Z≥0–graded, with

degR
(s)
i = degX

(s)
i = s for X = F,H,E, deg ~ = 1

Remark 4.1.7. The definition of Y λµ (R) given here differs from that given in [KWWY14, §4C], where

it was instead defined as the image of Yµ in a certain ring of difference operators. In type A, these two

definitions are now known to agree (this follows from Theorem 4.2.11). See also [KTW+15, Remark

4.2].

It was shown recently that the definition given [KWWY14] is indeed a quantization of Grλµ [BFN16a,

Corollary B.26]. Furthermore this algebra can be realized as a convolution algebra [BFN16b], [BFN16a],

which provides a wealth of nice algebraic properties e.g. flatness as a module over C[H
(•)
• ]. In spite of

these recent results, in this thesis we have chosen to use Definition 4.1.5 because of its explicit presenta-

tion.

4.1.4 Coproducts

We will discuss here a sort of coproduct for the algebras Y λµ . Strictly speaking it is not one, because it

does not map into the tensor square. Rather, there is a family of homomorphisms

∆λ′,λ′′

µ′,µ′′ : Y λµ −→ Y λ
′

µ′ ⊗C[~] Y
λ′′

µ′′ , (4.6)

where λ′ ≥ µ′, λ′′ ≥ µ′′ are any elements of P+ such that λ = λ′ + λ′′ and µ = µ′ + µ′′. This map is

inspired by a similar one considered by Brundan and Kleshchev for finite W–algebras [BK06, §11]. It

seems likely that our map coincides, in the classical limit, with one defined geometrically recently by

Braverman, Finkelberg and Nakajima [BFN16a, §2(vi)] (see also Remark 4.2.21 below).

This map can also be defined for the specialized algebras Y λµ (R). In this case, we must partition

R = R′tR′′ where R′ and R′′ are sets of parameters of the appropriate sizes, and take the usual tensor

product over C:

∆λ′,λ′′

µ′,µ′′ : Y λµ (R) −→ Y λ
′

µ′ (R′)⊗ Y λ
′′

µ′′ (R′′)

Remark 4.1.8.

(a) Conjecture 6.1.1 below says that the set of highest weights for Y λµ (R) is a weight space B(λ,R)µ of

the product monomial crystal (as defined in §2). If this conjecture holds, then every simple highest

weight module for Y λµ (R) comes by pull-back of the tensor product of simple modules under some

∆ as above. In fact, this is true even if we fix a decomposition λ = λ′ + λ′′, since multiplication is

surjective by the definition of the product monomial crystal:

B(λ′,R′)× B(λ′′,R′′) −� B(λ,R)

From the point of view of the Yangian, the coproducts explain why the set of highest weights has

this “product” structure. See also §6.2.4.

There is an important subtlety in this discussion: we would need to consider Y λµ (R) for µ not

dominant. It is possible to define such an algebra, as in [BFN16a, Appendix B], which should

quantize a generalized slice Wλ
µ in the sense of [BFN16a, §2(ii)]. We will not define these algebras

here, since even less can presently be said about their highest weight theory.
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(b) Nakajima gave a similar map for quiver varieties [Nak01b]; we review his construction in §7.1.7.

There is a strong connection to our map: in §5.4 we will describe an analogous coproduct for B–

algebras, and in §8.3.1 we will show that this map on B–algebras agrees with Nakajima’s coproduct

in cohomology.

We begin by considering the corresponding map for shifted Yangians. Let us introduce the following

notation: for µ′, µ′′ ∈ P+ let Yµ′,µ′′ be the subalgebra of Y generated by

F
(r)
i , for i ∈ I, r > µ′′i ,

H
(r)
i , for i ∈ I, r > 0,

E
(r)
i , for i ∈ I, r > µ′i

(Here we should consider the Rees algebra Y~, but are writing Y for simplicity).

The following lemma is straightforward:

Lemma 4.1.9. If µ = µ′ + µ′′, then there is an isomorphism Ψµ′,µ′′ : Yµ −→ Yµ′,µ′′ defined by

F
(µi+r)
i 7−→ F

(µ′′i +r)
i , H

(r)
i 7−→ H

(r)
i , E

(r)
i 7−→ E

(µ′i+r)
i

for i ∈ I and r > 0.

Recall that the Yangian Y has the structure of a Hopf algebra, as explained at the end of §4.1.

Lemma 4.1.10. The comultiplication ∆ : Y −→ Y ⊗C[~] Y restricts to a map

∆ : Yµ′,µ′′ −→ Yµ′,0 ⊗C[~] Y0,µ′′

Proof. It suffices to show that the generators of Yµ′,µ′′ have coproducts in Yµ′ ⊗C[~] Yµ′′ .

As in [CP91], the element Si = H
(2)
i − 1

2 (H
(1)
i )2 satisfies [Si, E

(r)
i ] = 2E

(r+1)
i and

∆(Si) = Si ⊗ 1 + 1⊗ Si +
∑
β>0

cβF
(1)
β ⊗ E(1)

β

for some constants cβ . Also, recall that ∆(E
(1)
i ) = E

(1)
i ⊗ 1 + 1⊗E(1)

i . Using these two facts as well as

the fact that ∆ is an algebra homomorphism, it follows by induction that

∆(E
(r)
i ) ∈ E(r)

i ⊗ 1 + Y ≤ ⊗C[~] Y
>

Similarly ∆(F
(r)
i ) ∈ 1⊗ F (r)

i + Y < ⊗C[~] Y
≥. Note that [F

(s)
i , Y >] ⊂ Y ≥ for any s, and so we also have

∆(H
(r)
i ) = [∆(E

(r)
i ),∆(F

(1)
i )] ∈ Y ≤ ⊗C[~] Y

≥

Using the maps from the above lemmas, consider

Yµ
Ψµ′,µ′′−−−−→ Yµ′,µ′′

∆−→ Yµ′,0 ⊗C[~] Y0,µ′′
Ψ−1

µ′,0⊗Ψ−1

0,µ′′−−−−−−−−→ Yµ′ ⊗C[~] Yµ′′ (4.7)
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Let us denote this composition by ∆µ′,µ′′ .

Fix λ = λ′ + λ′′, µ = µ′ + µ′′ as above. Recall that the algebra Y λµ is a quotient of the polynomial

ring Ỹµ = Yµ ⊗ C[R
(s)
i ]. Extend the map ∆µ′,µ′′ to Ỹµ by

Ri(u) 7−→ R′i(u)⊗R′′i (u)

These are polynomials of degree λi, λ
′
i and λ′′i , respectively, and we have added primes to distinguish

them (these are not derivatives!).

Conjecture 4.1.11. The map ∆µ′,µ′′ : Ỹµ −→ Ỹµ′ ⊗C[~] Ỹµ′′ descends to

∆λ′,λ′′

µ′,µ′′ : Y λµ −→ Y λ
′

µ′ ⊗C[~] Y
λ′′

µ′′

Corollary 4.1.12. Assume that the above conjecture holds. Upon specializing to parameters R = R′tR′′

and setting ~ = 1, there is a corresponding homomorphism

∆λ′,λ′′

µ′,µ′′ : Y λµ (R) −→ Y λ
′

µ′ (R′)⊗ Y λ
′′

µ′′ (R′′)

To prove this conjecture, it suffices to show that the images of the generators A
(s)
i of the ideal for

Y λµ map to zero in the composite

Ỹµ −→ Ỹµ′ ⊗C[~] Ỹµ′′ −� Y λ
′

µ′ ⊗C[~] Y
λ′′

µ′′

It is not currently clear to the author how to do so.

Proposition 4.1.13. For g = sln, the conjecture holds.

We will postpone the proof until §4.3.3, after we have discussed connections to quantum determinants

(whose coproducts are easily computable).

We propose one more conjecture, which is based on the idea that the algebras Y λµ (R) should always

have at least one faithful simple highest weight module. Combined with the conjecture that all highest

weights come by pull-back under one of the maps ∆, as described in Remark 4.1.8(a), we propose:

Conjecture 4.1.14. For any fixed decomposition λ = λ′ + λ′′, the sum of the maps ∆λ′,λ′′

µ′,µ′′ ,

Y λµ −→
⊕

µ=µ′+µ′′

Y λ
′

µ′ ⊗C[~] Y
λ′′

µ′′

is injective.

4.2 Loop groups and the affine Grassmannian

In this section we will overview the definition of the affine Grassmannian, its Schubert varieties, and

certain transverse slices to Schubert varieties. A more thorough discussion of the affine Grassmannian can

be found in [Fal03], [Zhu16] or [Kum02, Chapter XIII]. We will also describe a conjectural presentation

for the coordinate rings of slices to Schubert varieties, following [KWWY14].

Associated to our algebraic group G, we can consider the loop groups G
(
C((t−1))

)
, G
(
C[t, t−1]

)
and G

(
C[t]

)
; the sets of Laurent series, Laurent polynomial, and polynomial points of the scheme G.
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Concretely, if G = SL2 then we have

SL2

(
C((t−1))

)
=

{
A =

(
a b

c d

)∣∣∣∣a, b, c, d ∈ C((t−1)), detA = 1

}

To simplify notation, we will write G((t−1)) instead of G
(
C((t−1))

)
, etc.

There is an associated space Grthin, called the (thin) affine Grassmannian, which is defined as the

homogeneous space Grthin := G[t, t−1]/G[t]. This space has a natural structure of ind-scheme, coming

from the functor

AlgC −→ Set, R 7−→ G
(
R[t, t−1]

)
/G
(
R[t]

)
or more precisely, the sheafification of this functor with respect to the fpqc topology.

We will work with the larger space called the thick affine Grassmannian, defined by Gr :=

G((t−1))/G[t]. This is naturally a scheme of infinite type, which is the principal reason for working with

Gr as opposed to Grthin: the coordinate rings of certain subvarieties to be more easily described. Note

that there is an embedding of the thin affine Grassmannian into the thick affine Grassmannian

G[t, t−1]/G[t] ↪→ G((t−1))/G[t].

There is an action of the group C∗ on both spaces by loop roation. Any coweight λ ∈ X∨ for G can

be thought of as a C[t, t−1]–point of G, and hence as a C((t−1))–point of G. We denote the image of

this point in Gr by tλ.

4.2.1 Schubert varieties and transverse slices

The group G[t] acts on Gr by left-multiplication. For each dominant coweight λ ∈ X∨+, there is a

G[t]–orbit called a Schubert cell:

Grλ := G[t]tλ
∗

Recall that λ∗ = −w0(λ), where w0 ∈ W is the longest element. The thin affine Grassmannian has a

well-known decomposition Grthin =
⊔
λ∈X∨+

Grλ, although this does not hold for Gr. The Schubert cells

satisfy a closure relation

Grλ =
⋃

µ∈X∨+,λ≥µ

Grµ

The closure Grλ is called a Schubert variety, and is a projective variety of dimension 〈λ, 2ρ〉. It is

typically singular.

Consider also the group G1[[t−1]], defined by the exact sequence

1 −→ G1[[t−1]] ↪−→ G[[t−1]]
t→∞
−� G −→ 1

For µ ∈ X∨+, consider the orbit

Grµ := G1[[t−1]]tw0µ
∗ (

= G1[[t−1]]t−µ
)

The group G1[[t−1]] is prounipotent, and its orbits Grµ are infinite-dimensional affine spaces.

We can now define an algebraic variety of central focus in this thesis.
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Definition 4.2.1. Let λ, µ ∈ X∨+ be dominant coweights, and assume that λ ≥ µ. Define

Grλµ := Grλ ∩ Grµ

This is a transverse slice to Grµ inside Grλ, at the point tw0µ
∗
.

Proposition 4.2.2 ([KWWY14, Proposition 2.1]).

(a) Grλµ is an affine variety of (complex) dimension 〈λ− µ, 2ρ〉.

(b) The action of C× on Gr by loop rotation preserves Grλµ, and contracts it to the unique fixed point

tw0µ
∗
.

Remark 4.2.3. In defining Grλ and Grµ, we took orbits through tλ
∗

and tw0µ
∗
, respectively. This differs

from the more standard convention of tλ and tw0µ, respectively (as in [KWWY14]). This change in

convention is to better match the notation of [KTW+15]. Note that both conventions are isomorphic,

via the diagram automorphism of G (for example, Grλ ∼= Grλ
∗
).

4.2.2 Functions and Poisson structure

Let V be a representation of G, and β ∈ V ∗, γ ∈ V . Then we have a matrix coefficient ∆β,γ ∈ C[G],

defined by

g 7−→ 〈β, gγ〉,

where 〈·, ·〉 denotes the pairing of V ∗ and V . The group G1[[t−1]] acts on V [[t−1]], and for s ∈ N we

define ∆
(s)
β,γ ∈ C[G1[[t−1]]] by

∆β,γ(g) =
∑
s≥0

∆
(s)
β,γ(g)t−s

where g ∈ G1[[t−1]]. We refer to these functions as generalized minors. Since G1[[t−1] is a pro-

unipotent group, they are generators of the algebra O[G1[[t−1]]]. Note that the loop rotation action of

C× from in the previous section corresponds to the grading defined by deg ∆
(s)
β,γ = s.

Remark 4.2.4. It is useful to encode functions in the form of formal series, and we will denote

∆β,γ(u) =
∑
s≥0

∆
(s)
β,γu

−s ∈ C
[
G1[[t−1]]

]
[[u−1]]

where u is a formal variable. Many computations below will be done in C
[
G1[[t−1]]

]
((u−1)). See also

Section 4.1.2.

As described in [KWWY14], the group G((t−1)) has the structure of a Poisson-Lie group. This

is inherited from the Manin triple (g((t−1)), t−1g[[t−1]], g[t]). More explicitly this Poisson structure is

(quasi)triangular, with the r–matrix

r =
Ω

v − u
= −

∞∑
r=0

∑
a

Jav
−r−1 ⊗ Jaur ∈ v−1g[[v−1]]⊗̂g[u]

where Ω =
∑
a Ja⊗Ja is the Casimir 2-tensor and {Ja}, {Ja} are dual bases for g with respect to the form

〈·, ·〉. The Poisson structure on G((t−1)) is defined by the difference π = rL− rR betweeen left and right
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translation of the element r considered as a bivector at the identity. The inclusion G1[[t−1]] ⊂ G((t−1)) is

Poisson, while G[t] ⊂ G((t−1)) is anti-Poisson (see [CP95, Proposition 1.4.2]). In particular, Gr inherits

the structure of a Poisson homogeneous space.

The Poisson bracket of functions on G1[[t−1]] can be explicitly described:

Proposition 4.2.5 ([KWWY14, Proposition 2.13]).

The Poisson bracket on O(G1[[t−1]]) is determined by the equality of formal Laurent series

(u− v) {∆β1,γ1(u),∆β2,γ2(v)} =
∑
a

(
∆Jaβ1,γ1(u)∆Jaβ2,γ2(v)−∆β1,Jaγ1(u)∆β2,Jaγ2(v)

)

The spaces Grµ and Grλµ are Poisson subvarieties of Gr, as described in [KWWY14, §2C]. In addition,

by [KWWY14, Theorem 2.7] Grλµ is a conical symplectic singularity, in the sense of §3.2. A base for the

universal deformation quantization of Grλµ is described in [KWWY14, §4D].

4.2.3 The algebras O(G1[[t
−1]]) and O(Grµ)

As noted in [KWWY14, Section 2.G], even if G is not simply-connected, the minors ∆
(r)
β,γ corresponding

to the fundamental representations V ($i) are still well-defined (in fact, G1[[t−1]] ∼= Gsc1 [[t−1]]). We will

use this observation to describe O(G1[[t−1]]) and O(Grµ).

Following [KTW+15, §5.2], we fix a highest weight vector v$i ∈ V ($i), and the associated Shapovalov

form on V ($i). Recall that this is the unique bilinear form (·, ·) : V ($i)× V ($i) −→ C such that

(xγ1, γ2) = (γ1, σ(x)γ2), ∀x ∈ g, γ1, γ2 ∈ V ($i)

Here σ = τω, where τ is the anti-involution x 7→ −x of g, and ω is the Chevalley involution defined by

ei 7→ −fi,fi 7→ −ei, and h 7→ −h for i ∈ I and h ∈ h (see [Kum02, §2.3]).

The Shapovalov form is non-degenerate, and so identifies V ($i) ∼= V ($i)
∗. For β, γ ∈ V ($i), we

define a function ∆
(r)
β,γ ∈ O(G1[[t−1]]) as above, but as the coefficient of t−r in the map g 7→ (β, gγ). We

note that the formula from Proposition 4.2.5 holds for these functions as well.

Consider the elements of O(G1[[t−1]]) defined by the series

fi(u) =
∑
r>0

f
(r)
i u−r :=

∆v$i ,fiv$i
(u)

∆v$i ,v$i
(u)

,

hi(u) = 1 +
∑
r>0

h
(r)
i u−r :=

∏
j∈I

∆v$j ,v$j
(u)−aji ,

ei(u) =
∑
r>0

e
(r)
i u−r :=

∆fiv$i ,v$i
(u)

∆v$i ,v$i
(u)

Theorem 4.2.6 ([KWWY14, Theorem 3.9]).

(a) O(G1[[t−1]]) is Poisson generated by the elements f
(r)
i , h

(r)
i , e

(r)
i for i ∈ I, r ∈ Z>0,

(b) O(Grµ) is the subalgebra of O(G1[[t−1]]) Poisson generated by the elements

f
(s)
i , for i ∈ I, s > 〈µ, αi〉,

h
(r)
i , e

(r)
i , for i ∈ I, r ∈ Z>0
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4.2.4 A conjectural description of O(Grλµ)

Let λ ≥ µ ∈ X∨+. Recall that Grλµ = Grλ ∩ Grµ, and in particular is a closed subvariety of Grµ.

Write λ − µ =
∑
i∈I miαi. Consider the Poisson ideal Jλµ in O(Grµ) which is generated by the

elements ∆
(r)
v$i ,v$i

for all i ∈ I and r > mi.

Proposition 4.2.7 ([KWWY14, Proposition 2.21]). The vanishing locus of Jλµ is Grλµ.

Denote the closed subscheme of Grµ corresponding to Jλµ by Gλµ .

Conjecture 4.2.8 ([KWWY14, Conjecture 2.20]). The ideal Jλµ is radical. In particular, it is the ideal

of Grλµ and we have Gλµ = Grλµ.

Building upon joint work with Kamnitzer and Muthiah [KMW16], in collaboration with Kamnitzer,

Muthiah and Yacobi we are now able to prove the following result:

Theorem 4.2.9 ([KMWY]). If g = sln, then Conjecture 4.2.8 holds.

4.2.5 Quantization of Grλµ

From §4.2, we have following diagrams of varieties and of coordinate rings:

G1[[t−1]] Grµ O
(
G1[[t−1]]

)
O(Grµ)

Grλµ O
(
Grλµ
)

The map G1[[t−1]] −� Grµ = G1[[t−1]]t−µ (recall that tw0µ
∗

= t−µ) is the surjection of this group onto

its orbit, and in particular, the corresponding map on functions is the inclusion of the invariants under

the stabilizer of tw0µ. The inclusion Grλµ ↪−→ Grµ is as a closed subscheme, and the so the corresponding

map on functions is a surjection.

Analogously, from §4.1 we have the diagram

Y Yµ

Y λµ (R)

This analogy is of course completely intentional. The following theorem is an amalgam of Theorems

3.9, 3.12 and 4.8 in [KWWY14]:

Theorem 4.2.10 ([KWWY14]).

(a) There is an isomorphisms of graded Poisson algebras grY
∼−→ O(G1[[t−1]]), defined by

F
(r)
i 7−→ f

(r)
i , H

(r)
i 7−→ h

(r)
i , E

(r)
i 7−→ e

(r)
i

for all i ∈ I, r ∈ Z>0.

(b) The map from (a) restricts to an isomorphism of graded Poisson algebras grYµ
∼−→ O(Grµ).
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(c) The map from (b) induces a surjective map of graded Poisson algebras grY λµ (R) −� O(Grλµ), which

is an isomorphism modulo the nilradical of the left-hand side. If Conjecture 4.2.8 holds, then it is

an isomorphism.

It is also conjectured that the algebra Y λµ from (4.5) is (a base-change of) the universal deformation

quantization of Grλµ, see [KWWY14, Conjecture 4.11].

As a consequence of Theorem 4.2.9, we obtain:

Corollary 4.2.11. For g = sln, the above gives an isomorphism of graded Poisson algebras

grY λµ (R) = O(Grλµ)

4.2.6 Coproducts

In this section we revisit the coproducts discussed in §4.1.4, but on the commutative level. The classical

limit of the map (4.7) is a homomorphism

∆µ′,µ′′ : O(Grµ) −→ O(Grµ′)⊗O(Grµ′′) (4.8)

This map is Poisson, since it is the classical limit of a homomorphism between quantizations. As Y

quantizes the Poisson-Lie group G1[[t−1]] (∼= Gr0), the case of ∆0,0 corresponds to group multiplication,

m : G1[[t−1]]×G1[[t−1]] −→ G1[[t−1]]

To describe the general map (4.8) geometrically, we will make use of the following general result:

Lemma 4.2.12. Let N be a finite-dimensional unipotent algebraic group over C. Then multiplication

defines an isomorphism

N [t]×N1[[t−1]]
∼−→ N((t−1))

Proof. This map is injective: if n+
1 n
−
1 = n+

2 n
−
2 with n+

i ∈ N [t] and n−i ∈ N1[[t−1]], then (n+
2 )−1n+

1 =

n−2 (n−1 )−1. Since N [t] ∩N1[[t−1]] = {1}, this implies that n±1 = n±2 .

It remains to prove surjectivity, which we do by induction on dimN . When dimN = 1, so N ∼= Ga,

the claim is clear: C((t−1)) = C[t]⊕ t−1C[[t−1]]. Any other N fits into an exact sequence

1 −→ N ′ −→ N −→ N ′′ −→ 1

of unipotent groups with dimN ′, N ′′ < dimN . Then N = N ′N ′′ = N ′′N ′ under multiplication.

Assuming the claim for N ′, N ′′, we have

N [t]N1[[t−1]] = N ′′[t]N ′[t]N ′1[[t−1]]N ′′1 [[t−1]]

= N ′′[t]N ′((t−1))N ′′1 [[t−1]]

= N ′((t−1))N ′′[t]N ′′1 [[t−1]]

= N ′((t−1))N ′′((t−1))

= N((t−1))

By induction, this proves the claim.
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Definition 4.2.13. For the unipotent subsgroups N± ⊂ G, define projection maps:

π+ : N+((t−1)) ∼= N+
1 [[t−1]]×N+[t] −→ N+

1 [[t−1]] (4.9)

π− : N−((t−1)) ∼= N−[t]×N−1 [[t−1]] −→ N−1 [[t−1]]

using the decomposition from the lemma.

Geometrically, the map (4.8) corresponds to a “product”

Grµ′ × Grµ′′ −→ Grµ

To simplify the definition of this map, we introduce for each µ ∈ X∨+ the space

Wµ := N−1 [[t−1]]T1[[t−1]]t−µN+
1 [[t−1]] (4.10)

thought of as a subset of G((t−1)). This set is an affine scheme of infinite type, since it is in bijection

with the product

N−1 [[t−1]]× T1[[t−1]]×N+
1 [[t−1]]

A space similar to Wµ appears in [BFN16a, §2(xi)].

Recall that in §4.2.4 we gave a conjectural description Jλµ of the defining ideal of Grλµ, as a Poisson

ideal generated by elements ∆
(r)
v$i ,v$i

for r > mi. Let us denote by Gλµ the closed subscheme of Grµ

corresponding to Jλµ . Then Grλµ is the reduced scheme corresponding to Gλµ , and we conjecture that

Gλµ = Grλµ.

Proposition 4.2.14. Let λ, µ ∈ X∨+ with λ ≥ µ.

(a) The quotient map G((t−1))→ Gr restricts to an isomorphism Wµ
∼−→ Grµ.

(b) Under this isomorphism Gλµ ⊂ Grµ is identified with the subscheme Wλ
µ ⊂ Wµ, defined by imposing

on x ∈ Wµ that the pole of x acting on V (τ) has order at most 〈λ, τ〉, for all τ ∈ X+.

Proof. (a) For an element n−ht−µn+ ∈ Wµ, we can write its image in Gr as n−h(t−µn+tµ)t−µ. This

lies in Grµ = G1[[t−1]]t−µ, since t−µn+tµ ∈ N+
1 [[t−1]] because µ ∈ X∨+. It is not difficult to verify that

this map Wµ → Grµ is injective.

Now let g ∈ G1[[t−1]] and consider the point gt−µ ∈ Grµ. Any g ∈ G1[[t−1]] has a Gauss decomposi-

tion g = n−hn+ (in other words, G1[[t−1]] =W0), and in Gr we have an equality

gt−µ = n−ht−µπ+(tµn+t−µ) (4.11)

since tµn+t−µ ∈ π+(tµn+t−µ)G[t]. The right-hand side of (4.11) is in the image of Wµ, proving that

Wµ −→ Grµ is surjective.

(b) By the results of [KMW16], Gλµ is the scheme-theoretic intersection in Gr of Grµ with a closed

scheme Gλ, the latter defined by conditions on poles as above. Taking the inverse image under the

isomorphism Wµ
∼−→ Grµ gives the claim.

Remark 4.2.15. The space Wλ
µ is conjectured to agree with the generalized slices as defined recently in

[BFN16a, §2(ii)]. We have mimicked their notation, although it is not known whether these spaces are

the same.
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Consider elements n−1 h1t
−µ′n+

1 ∈ Wµ′ and n−2 h2t
−µ′′n+

2 ∈ Wµ′′ . Then there is a Gauss decomposition

h1n
+
1 n
−
2 h2 = n−3 h3n

+
3 ∈ N

−
1 [[t−1]]T1[[t−1]]N+

1 [[t−1]] = G1[[t−1]]

Definition 4.2.16. For µ = µ′ + µ′′, define a product map

mµ′,µ′′ :Wµ′ ×Wµ′′ −→Wµ(
n−1 h1t

−µ′n+
1 , n

−
2 h2t

−µ′′n+
2

)
7−→ π−

(
n−1 (t−µ

′
n−3 t

µ′)
)
h3t
−µ′−µ′′π+

(
(tµ
′′
n+

3 t
−µ′′)n+

2

)
Remark 4.2.17. This definition can be reformulated by working in the double quotient

N−[t] \G((t−1))/N+[t]

One can show that Wµ maps injectively into this double quotient. If x′ ∈ Wµ′ and x′′ ∈ Wµ′′ , then the

double coset N−[t]x′x′′N+[t] (under usual multiplication for G((t−1))) is the image of a unique element

of Wµ: precisely mµ′,µ′′(x
′, x′′).

Similar spaces of double cosets appear in [BFN16a, §2(xi)] and [BDG15, §6.5] as the space of “scat-

tering matrices” (but with Borel subgroups B± instead of unipotent subgroups N±).

Since Wµ
∼−→ Grµ, there is a corresponding map

mµ′,µ′′ : Grµ′ × Grµ′′ −→ Grµ (4.12)

Conjecture 4.2.18. The map mµ′,µ′′ is Poisson, and corresponds to the map ∆µ′,µ′′ on functions.

Remark 4.2.19. The two parts of this conjecture imply each other. On the one hand, if mµ′,µ′′ cor-

responds to ∆µ′,µ′′ then it is Poisson, the latter being Poisson since it is the classical limit of a homo-

morphism between quantizations. On the other hand, if mµ′,µ′′ is Poisson then we only need to verify

that it agrees with ∆µ′,µ′′ on Poisson generators for O(Grµ) (as appear in Theorem 4.2.6), which is

straightforward.

We now show that this product map behaves well with respect to the subschemes Gλµ ,Gr
λ
µ ⊂ Grµ.

Theorem 4.2.20. Let λ = λ′ + λ′′ and µ = µ′ + µ′′ be elements of X∨+. Then mµ′,µ′′ induces maps

(a) Gλ′µ′ × Gλ
′′

µ′′ −→ Gλµ

(b) Grλ
′

µ′ × Grλ
′′

µ′′ −→ Grλµ

Proof. Part (a) follows from the description of Wλ
µ given in Proposition 4.2.14, since the pole conditions

defining Wλ′

µ′ and Wλ′′

µ′′ sum to the pole conditions defining Wλ
µ . Part (b) is implied by (a), since a

morphism of schemes naturally induces one between the corresponding reduced schemes.

Remark 4.2.21. It seems very likely that Grλ
′

µ′×Gr
λ′′

µ′′ −→ Grλµ defined above agrees with the multiplication

for generalized slice defined in [BFN16a, §2(vi)].
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4.3 Lifted minors

In this section, we will show how to canonically define lifts T
(r)
β,γ ∈ Y of the minors ∆

(r)
β,γ . These elements

will play a key role in Chapter 5, where we describe the B-algebra of Y λµ (R).

Of course, there are many choices of lift of a given element x ∈ O(G1[[t−1]]) to an element X ∈ Y .

By “canonical”, we mean that these elements are uniquely determined by imposing:

(1) T
(r)
v$i ,v$i

= A
(r)
i for all i ∈ I, where A

(r)
i is defined as in (4.3).

(2) Compatibility with the adjoint action of the Lie algebra g.

See Corollary 4.3.6 for a precise statement. In Section 4.3.3, we will show that in type A our lifts T
(r)
β,γ

are related to quantum determinants (Corollary 4.3.10).

4.3.1 Working on the commutative level

Because of the inclusion Ug ↪→ Y , it follows from Theorem 4.2.10 that there Hamiltonian action of the

Lie algebra g on O(G1[[t−1]]). Explicitly, this comes from the (comoment) map extending

ei 7−→ e
(1)
i = ∆

(1)
fiv$i ,v$i

, fi 7−→ f
(1)
i = ∆

(1)
v$i ,fiv$i

Using Proposition 4.2.5, this corresponds to the action{
e

(1)
i ,∆β,γ(u)

}
= ∆fiβ,γ(u)−∆β,eiγ(u){

f
(1)
i ,∆β,γ(u)

}
= ∆eiβ,γ(u)−∆β,fiγ(u)

In particular, the Cartan weight of ∆
(r)
β,γ ∈ O(G1[[t−1]]) with respect to this action is wt(γ − β).

Recall the Chevalley involution $ of g, as defined in §4.2.3. Define another involution ι of g by

ei 7→ −ei, fi 7→ −fi, and h 7→ h.

Corollary 4.3.1. Consider the cyclic representation Vi of Ug generated by the vector ∆$i,$i(u) ∈
O(G1[[t−1]])[[u−1]]. Then there is an isomorphism

Vi
∼−→ (ι ◦ γ)∗

(
V ($i)

)
⊗ ι∗

(
V ($i)

)
∆β,γ(u) 7−→ β ⊗ γ

In particular, Vi ∼= V ($∗i )⊗ V ($i).

4.3.2 Lifting generalized minors

Fix λ ≥ µ ∈ P+, and R a set of parameters of weight λ. As in equation (4.3), we define elements A
(s)
i

in Ỹµ. We will think of these elements as being in Y , under the inclusion Yµ ⊂ Y .

Following [GKLO05], consider elements

Bi(u) = Ai(u)Ei(u) Ci(u) = Fi(u)Ai(u)

Di(u) = Hi(u)Ai(u) + Fi(u)Ai(u)Ei(u).
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Proposition 4.3.2 (Proposition 2.1, [GKLO05]). We have the relations

[Ai(u), Aj(v)] = 0, for all i, j ∈ I

[Ai(u), Bj(v)] = [Ai(u), Cj(v)] = 0,

[Bi(u), Bi(v)] = [Ci(u), Ci(v)] = 0,

[Bi(u), Cj(v)] = 0,

(u− v)[Ai(u), Bi(v)] = Bi(u)Ai(v)−Bi(v)Ai(u),

(u− v)[Ai(u), Ci(v)] = Ai(u)Ci(v)−Ai(v)Ci(v),

(u− v)[Bi(u), Ci(v)] = Ai(u)Di(v)−Ai(v)Di(u),

(u− v)[Bi(u), Di(v)] = Bi(u)Di(v)−Bi(v)Di(u),

(u− v)[Ci(u), Di(v)] = Bi(u)Ci(v)−Bi(v)Ci(u),

(u− v)[Ai(u), Di(v)] = Bi(u)Ci(v)−Bi(v)Ci(u)

Proof. We note that the series considered here differ from those in [GKLO05] by multiplication by

constant series. Indeed, there exist unique si(u) ∈ 1 + u−1C[[u−1]] such that

ri(u) =
si(u)si(u− 1)∏
j∼i sj(u−

1
2 )

with ri(u) as defined in (4.2). Then the series si(u)−1Xi(u) for X = A,B,C,D are exactly those defined

in [GKLO05]. With this observation, the claim is immediate from Proposition 2.1 in [GKLO05].

Corollary 4.3.3. For any i ∈ I we have

(u− v)[Ai(u), Ei(v)] = Ai(u) (Ei(u)− Ei(v)) ,

(u− v)[Ai(u), Fi(v)] = (Fi(v)− Fi(u))Ai(u)

We can explicitly relate the elements Ai(u), Bi(u), etc., to certain functions on G1[[t−1]].

Proposition 4.3.4 ([KWWY14, Proposition 4.3]). Under the isomorphism of Poisson algebras grY →
O(G1[[t−1]]) from Theorem 4.2.10, we have

Ai(u) 7→ ∆v$i ,v$i
(u),

Bi(u) 7→ ∆fiv$i ,v$i
(u),

Ci(u) 7→ ∆v$i ,fiv$i
(u),

Di(u) 7→ ∆fiv$i ,fiv$i
(u)

Our goal now is to extend the lifts provided by Proposition 4.3.4 to all generalized minors ∆β,γ(u),

via an analog of Corollary 4.3.1. We recall that the embedding Ug ↪→ Y is defined by

ei 7−→ E
(1)
i , fi 7−→ F

(1)
i

Proposition 4.3.5. The cyclic Ug-module generated by the vector Ai(u) ∈ Y [[u−1]] under the adjoint

action is isomorphic to V ($∗i )⊗ V ($i), via the map extending Ai(u) 7→ v−$i ⊗ v$i .
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Corollary 4.3.6. There are unique lifts Tβ,γ(u) ∈ Y [[u−1]] of the minors ∆β,γ(u) for β, γ ∈ V ($i),

satisfying

(1) Tv$i ,v$i (u) = Ai(u),

(2) Compatibility with the adjoint action of g:

[E
(1)
j , Tβ,γ(u)] = Tfjβ,γ(u)− Tβ,ejγ(u)

[F
(1)
j , Tβ,γ(u)] = Tejβ,γ(u)− Tβ,fjγ(u)

We will denote Tβ,γ(u) =
∑
r≥0 T

(r)
β,γu

−r, and call these elements lifted minors. Note that Tfiv$i ,v$i (u) =

Bi(u), Tv$i ,fiv$i (u) = Ci(u), and Tfiv$i ,fiv$i (u) = Di(u), lifting Proposition 4.3.4.

If β and γ are both weight vectors, then the weight of T
(r)
β,γ with the respect to the action of h ⊂ g is

wt(γ − β).

To prove the Proposition, we will use an explicit presentation of V ($∗i )⊗ V ($i). Consider the U(g)

module

N = Ind
U(g)
U(h)Ctriv

where Ctriv = Cv0 is the trivial h-module. The following result seems to be known to experts.

Lemma 4.3.7. There is an isomorphism of g-modules

V ($∗i )⊗ V ($i) ∼= N/
〈
e2
i v0, ejv0, f

2
i v0, fjv0

∣∣∣j 6= i
〉

extending v−$i ⊗ v$i 7→ v0.

Proof. Using the BGG resolution, we have two short exact sequences:

0→ Im
(⊕
j∈I

M(sj ·$i)
)
→M($i)→ V ($i)→ 0

0→ Im
(⊕
j∈I

Mlow(−sj ·$i)
)
→Mlow(−$i)→ V ($∗i )→ 0

where Mlow(λ) denotes the lowest weight Verma for U(g) of weight λ ∈ h∗. Hence

0→
Im (

⊕
Mlow(−sj ·$i))⊗M($i)

+

Mlow(−$i)⊗ Im (
⊕
M(sj ·$i))

→Mlow(−$i)⊗M($i)→ V ($∗i )⊗ V ($i)→ 0

The claim follows by observing that, for any λ ∈ h∗,

Mlow(−λ)⊗M(λ) ∼= N, v−λ ⊗ vλ 7→ v0

Proof of Proposition 4.3.5. By Proposition 4.3.2, [h, Ai(u)] = 0, [E
(1)
j , Ai(u)] = [F

(1)
j , Ai(u)] = 0 for

j 6= i, and

[E
(1)
i , [E

(1)
i , Ai(u)]] = [B

(1)
i , Bi(u)] = 0, [F

(1)
i , [F

(1)
i , Ai(u)]] = −[C

(1)
i , Ci(u)] = 0
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Therefore by the previous Lemma, the cyclic module U(g)·Ai(u) admits a surjection from V ($∗i )⊗V ($i).

But the dimension of U(g)·Ai(u) is at least that of U(g)·∆v$i ,v$i
(u). Indeed, for any fixed s, the module

U(g) ·A(s)
i is contained in the filtered piece Y≤s of Y . The filtered pieces are Ug-invariant, so there is a

surjective morphism U(g) ·A(s)
i → U(g) ·∆(s)

v$i ,v$i
of U(g)-modules defined by x ·A(s)

i 7→ x ·∆(s)
v$i ,v$i

.

4.3.3 Connection to quantum determinants in type A

In the case g = sln we can give another description of the lifted minors of the previous section: they

correspond with the quantum determinants of the RTT presentation.

To begin, we recall the definition of the Yangian Y (gln) (see [Mol07], [BK05]): it is the associative

algebra with generators t
(r)
i,j for 1 ≤ i, j ≤ n and r ≥ 1, and relations

[t
(r+1)
i,j , t

(s)
k,l ]− [t

(r)
i,j , t

(s+1)
k,l ] = t

(r)
k,jt

(s)
i,l − t

(s)
k,jt

(r)
i,l

where we define t
(0)
ij = δi,j . These relations can also be encoded in series form:

(u− v)[ti,j(u), tk,l(v)] = tk,j(u)ti,l(v)− tk,j(v)ti,l(u) (4.13)

where ti,j(u) = δij +
∑
r≥1 t

(r)
i,j u

−r.

Given two i-tuples a = (a1, . . . , ai) and b = (b1, . . . , bi) of elements of {1, . . . , n}, define the quantum

determinant (see [Mol07], [BK05, §8])

Qa,b(u) =
∑
σ∈Si

(−1)σtaσ(1),b1(u− i+ 1)taσ(2),b2(u− i+ 2) · · · taσ(i),bi(u)

Considering the left action of the symmetric group Si on i-tuples, for π ∈ Si we have

Qπa,b(u) = (−1)πQa,b(u) = Qa,πb(u)

In particular if the elements from a are not pairwise distinct then Qa,b(u) = 0, and similarly for b.

Therefore the definition of the quantum determinant factors through the map taking i-tuples to

vectors in
∧iCn,

a = (a1, . . . , ai) 7−→ va1 ∧ · · · ∧ vai

where v1, . . . , vn is the usual basis for Cn. Extending the definition by bilinearity, we define Qβ,γ(u) for

β, γ ∈
∧iCn. We equip

∧iCn with the usual action of gln.

Lemma 4.3.8. Under the action of U(gln) =
〈
t
(1)
i,j |1 ≤ i, j ≤ n

〉
⊂ Y (gln), we have

[t
(1)
i,j , Qβ,γ(u)] = Qeijβ,γ(u)−Qβ,ejiγ(u)

Proof. It is sufficient to consider the case where β = va1 ∧ · · · ∧ va` and γ = vb1 ∧ · · · ∧ vb` for some a,

b. Since eijva = δajvi, formula (4.13) yields

[t
(1)
i,j , ta,b(u)] = δajti,b(u)− δibta,j(u)

proving the case where a = (a) and b = (b) have length 1.
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For general a and b of length `, we apply the ` = 1 case and the definition of Qa,b(u) to compute

[t
(1)
i,j , Qa,b(u)] =

∑̀
r=1

∑
σ∈S`

(−1)σδj,aσ(r)taσ(1),b1(u− `+ 1) · · · ti,br (u− `+ r) · · · taσ(`),b`(u)

−
∑̀
r=1

∑
σ∈S`

(−1)σδi,ar taσ(1),b1(u− `+ 1) · · · taσ(r),j(u− `+ r) · · · taσ(`),b`(u)

If there exists p (necessarily unique) such that j = ap, then the first sum can be written as

∑̀
r=1

∑
σ∈S`,
σ(r)=p

(−1)σtaσ(1),b1(u− `+ 1) · · · ti,br (u− `+ r) · · · taσ(`),b`(u)

which is equal to Qeijβ,γ(u). If no such p exists, then the sum is zero as is eijβ.

Simiarly, if there exists p such that i = bp then the second sum can be written as∑
σ∈S`

(−1)σtaσ(1),b1(u− `+ 1) · · · taσ(r),j(u− `+ r) · · · taσ(`),b`(u)

which equals Qβ,ejiγ(u). If no such p exists then the sum is zero and so is ejiγ.

To bring our notation in line with the previous sections we also make the identification V ($i) ∼=
∧iCn

of sln representations, so that the weight space corresponding to a weight in W$i is identified with the

span of a basis element va1∧· · ·∧vai . For example v$i corresponds to v1∧· · ·∧vi, while fiv$i corresponds

to v1 ∧ · · · ∧ vi−1 ∧ vi+1.

The following theorem is well-known, see for example [Mol07, Rk. 3.1.8], or [BK08, §8].

Theorem 4.3.9. There is an embedding φ̃ : Y (sln)→ Y (gln), defined by

φ̃(Hi(u)) =
Qv$i−1

,v$i−1
(u+ i−1

2 )Qv$i+1
,v$i+1

(u+ i+1
2 )

Qv$i ,v$i (u+ i−1
2 )Qv$i ,v$i (u+ i+1

2 )
,

φ̃(Ei(u)) = Qfiv$i ,v$i (u+ i−1
2 )Qv$i ,v$i (u+ i−1

2 )−1,

φ̃(Fi(u)) = Qv$i ,v$i (u+ i−1
2 )−1Qv$i ,fiv$i (u+ i−1

2 )

Moreover, the center of Y (gln) is freely generated by the coefficients of Qv$n ,v$n (u), and there is an

isomorphism of algebras

Y (gln) ∼= Y (sln)⊗ Z(Y (gln))

Consider the trivial central character χ0 for Y (gln), and the central quotient Y (gln)/χ0. Define φ to

be the composition

Y (sln)
φ̃−→ Y (gln) � Y (gln)/χ0

Define series s1(u), . . . , sn−1(u) ∈ 1 + u−1C[[u−1]] by the property

ri(u) =
si(u)si(u− 1)

si−1(u− 1
2 )si+1(u− 1

2 )
, i = 1, . . . , n− 1,
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viewing s0(u) = sn(u) = 1. Here ri(u) is the power series defined using Ri in equation (4.2). It follows

from Lemma 2.1 in [GKLO05] that these series are uniquely defined.

The result of this chapter provides the promised relationship between lifted minors and quantum

determinants:

Corollary 4.3.10. φ : Y (sln)→ Y (gln)/χ0 is an isomorphism. Moreover,

φ(Tβ,γ(u)) = si(u)Qβ,γ(u+ i+1
2 )

for all β, γ ∈ V ($i).

Proof. φ is an isomorphism by the previous theorem. For the second claim, we first note that

φ(Hi(u)) = ri(u)
φ(Ai−1(u− 1

2 ))φ(Ai+1(u− 1
2 ))

φ(Ai(u))φ(Ai(u− 1))

By the uniqueness of factorization from Lemma 2.1 in [GKLO05], it follows that φ(Ai(u)) = si(u)Qv$i ,v$i (u+
i+1
2 ). Since φ(E

(1)
i ) = t

(1)
i+1,i and φ(F

(1)
i ) = t

(1)
i,i+1, the claim follows by applying Corollary 4.3.6 and

Lemma 4.3.8.

We have not made use of the Hopf algebra structure of Y (gln) so far. A useful property of quantum

minors is that their coproducts are easily computable [Mol07, Proposition 1.6.9], and in particular,

∆
(
Qv$i ,v$i (u)

)
=
∑
γ

Qv$i ,γ(u)⊗Qγ,v$i (u)

where γ ranges over a basis for V ($i). Moreover, the map φ is an isomorphism of Hopf algebras [Mol07,

Proposition 1.8.4].

Using this, we can now give a proof of Proposition 4.1.13:

Proof of Proposition 4.1.13. We prove the version involving specialization R = R′ tR′′; the parametric

version is similar. In this case there are corresponding series si(u), s′i(u) and s′′i (u), as above, and it is

not hard to check that si(u) = s′i(u)s′′i (u). Hence, in Y (gln) we have

∆
(
si(u)Qv$i,$i (u)

)
=
∑
γ

s′i(u)Qv$i ,γ(u)⊗ s′′i (u)Qγ,v$i (u)

This continues to hold in Y (gln)/χ0. Applying φ−1, by Corollary 4.3.10 we have

∆
(
Ai(u)

)
=
∑
γ

T ′v$i ,γ
(u)⊗ T ′′γ,v$i (u) (4.14)

where ∆ now denotes the coproduct of Y . The above elements are defined using data R,R′ and R′′,

respectively; we have added primes to distinguish them.

We must take into account the map (4.7). Note that Ψµ′,µ′′(Ai(u)) = Ai(u). Also,

T ′v$i ,γ
(u) ∈ U(b−) ·A′i(u), T ′′γ,v$i

(u) ∈ U(b) ·A′′i (u),

where by U(b−) we mean the subalgebra of Y generated by the elements H
(1)
i , F

(1)
i . The map Ψ−1

µ′,0 is
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the identity on U(b−), and in particular, the coefficient of u−r in Ψ−1
µ′,0

(
T ′v$i ,γ

(u)
)

is an element of Iλ
′

µ′

for r > m′i. Similarly for T ′′γ,v$i
(u).

Therefore, the image of the right-hand side of (4.14) in Y λ
′

µ′ (R′) ⊗ Y λ′′µ′′ (R′′) is a polynomial in u−1

of degree m′i + m′′i = mi. Hence the elements A
(r)
i map to zero for r > mi, and therefore Iλµ is in the

kernel of this map. This proves the claim.



Chapter 5

The B–algebra of Y λµ (R)

5.1 Highest weights for truncated shifed Yangians

By the PBW Theorem 4.1.4, there is a decomposition analogous to that in the Harish-Chandra isomor-

phism for Ug:

Y = C[H
(•)
• ]⊕

∑
i,r

(
F

(r)
i Y + Y E

(r)
i

)
and similarly for Yµ. We denote the projection Π : Yµ −� C[H

(•)
• ].

The following lemma is straightforward using the PBW theorem.

Lemma 5.1.1. The B–algebras of Y and Yµ are both canonically isomorphic to C[H
(•)
• ], via its inclusion

into the zero graded component:

C[H
(•)
• ] ⊂ (Yµ)0 −� B(Yµ)

Intuitively, this result simply says that for any choice of series Ji(u) ∈ 1 + u−1C[[u−1]] we can find a

module with highest weight vector 1 such that

Hi(u)1 = Ji(u)1

for all i ∈ I. We can think of (the coefficients of) the tuple (Ji(u))i∈I ∈ MaxSpecC[H
(•)
• ]. At least one

such module always exists: the Verma module M(J), formed by induction from the subalgebra Y ≥0.

The situation for Y λµ (R) is much more delicate, however. Given J as above, we can form the module

M(J,R) := Y λµ (R)⊗Yµ M(J)

This module represents the functor on the category of Y λµ (R)–modules, which takes a module M to the

subspace of all vectors m ∈M such that

Hi(u)m = Ji(u)m, E
(r)
i m = 0

However, M(J,R) will typically be zero. More precisely, recall that Y λµ (R) is the quotient of the shifted

Yangian Yµ by the ideal

Iλµ :=
〈
A

(r)
i : i ∈ I, r > mi

〉

41
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which depends on R in a subtle way. Then, the module M(J,R) 6= 0 if and only if IλµM(J) 6= M(J).

The B–algebra provides us with a more convenient way of encoding this condition: M(J,R) 6= 0 iff

J ∈ MaxSpecB
(
Y λµ (R)

)
(see §3.3.1). Here is a first pass at expressing this algebra:

Lemma 5.1.2. There is a canonical isomorphism

B
(
Y λµ (R)

) ∼= C[H
(•)
• ]/Π(Iλµ)

Proof. By Lemma 3.3.3, there is a surjection B(Yµ) −� B(Y λµ (R)). Using the previous lemma, consider

the composition

C[H
(•)
• ]

∼−→ B(Yµ) −� B
(
Y λµ (R)

)
Its kernel is precisely Π(Iλµ).

We can allow ourselves slightly more flexibility by working with the larger left ideal Lλµ = Y · Iλµ in

Y , instead of with Iλµ . This is justified by the following result:

Lemma 5.1.3. The B–algebra for Y λµ (R) can be computed using Lλµ:

B
(
Y λµ (R)

) ∼= C[H
(•)
• ]/Π(Lλµ)

Proof. We need to show that Π(Iλµ) ⊃ Π(Lλµ). By Proposition 4.1.4, the PBW bases for Y and Yµ are

compatible: any x ∈ Y can be written uniquely as a sum x =
∑
a Faxa, where each xa ∈ Yµ and Fa is a

monomial in the generators F
(r)
α with r ≤ 〈µ, α〉.

For x ∈ Lλµ, we can assume that all xa ∈ Iλµ . But under Π, any summand where Fa is non-trivial is

sent to zero. Hence Π(x) ∈ Π(Iλµ).

5.2 The commutative case

In this section we will give a conjectural description of the fixed point subscheme (Grλµ)C
×

, corresponding

to the conjectural description of O(Grλµ) from §4.2.4. The C×–action we consider corresponds to the

principal gradation on Y ; geometrically, this is the left action of C× on Gr under the coweight ρ∨ : C× ↪→
T .

Our description will be completely parallel to the non-commutative case discussed in the previously

section, and for that reason we will omit proofs. Nonetheless we hope that this geometric picture better

motivates our calculations for the Yangian throughout this chapter. Because of §3.3.2, we will continue

to use the B–algebra terminology.

Consider the surjection

p : G1[[t−1]] −� Grµ, g 7−→ gt−µ

From Theorem 4.2.10 (a) and the PBW Theorem 4.1.4 for the Yangian, we identify the corresponding

map on functions as the inclusion of polynomial rings

C[f (s)
α , h

(r)
i , e(r)

α : r > 0, s > 〈µ, α〉] ↪−→ C[f (r)
α , h

(r)
i , e(r)

α : r > 0]

In particular, p is locally-trivial fibration.



Chapter 5. The B–algebra of Y λµ (R) 43

In §4.2.4, we gave a conjectural description of O(Grλµ): the algebra O(Grµ)/Jλµ , for a certain Poisson

ideal Jλµ . Let us denote Gλµ = Spec
(
O(Grµ)/Jλµ

)
to distinguish it from Grλµ. Consider now the diagram

G1[[t−1]] Grµ

p−1
(
Gλµ
)

Gλµ

p

Passing from Gλµ to p−1(Gλµ) makes it simpler to a give a presentation for its defining ideal; in the notation

of the previous section, the ideal of p−1(Gλµ) corresponds to Lλµ while Jλµ corresponds to Iλµ . In particular,

we proved the following result in [KMW16]:

Proposition 5.2.1 ([KMW16, Proposition 9.4]). The ideal of p−1(Gλµ) in O(G1[[t−1]]) is generated (as

an ordinary ideal) by the elements

∆
(s)
β,γ for s > mi + 〈µ,$i − wt γ〉

over all i ∈ I and weight vectors β, γ ∈ V ($i).

Remark 5.2.2. We can extend the above presentation to include the elements

∆
(s)
β,γ for s > 〈λ− µ, τ〉+ 〈µ, τ − wt γ〉

for all dominant weights τ ∈ P+ and weight vectors β, γ ∈ V (τ). However, this ideal is generated by the

elements given above (i.e. we only need to consider τ ranging over fundamental weights).

Our goal now is to compute the torus-fixed point subscheme of Gλµ . The following two lemmas are

analogous to Lemmas 5.1.1 and 5.1.3:

Lemma 5.2.3. The B–algebras of O(G1[[t−1]]) and O(Grµ) are both canonically isomorphic to C[h
(•)
• ],

via its inclusion into the zero graded component

C[h
(•)
• ] ↪−→ O(Grµ)0 −� B

(
O(Grµ)

)
Correspondingly, the map

T1[[t−1]] ↪−→ (Grµ)C
×
, g 7−→ gt−µ

is an isomorphism.

Lemma 5.2.4. As quotients of C[h
(•)
• ] = O(T1[[t−1]]), the B–algebras of O(Gλµ) and O

(
p−1(Gλµ)

)
are

equal.

Let us introduce some notation. By the previous two lemmas, we get generators for the B–algebra of

O
(
Gλµ
)

by restricting the generators ∆
(s)
β,γ from Proposition 5.2.1 to T1[[t−1]] ⊂ G1[[t−1]]. This restriction

is zero unless β, γ ∈ V ($i) have 〈β, γ〉 6= 0: if γ has weight ν then for any g ∈ T1[[t−1]]

〈β, gγ〉 = ν(g)〈β, γ〉
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where we extend ν : T → C× to ν : T1[[t−1]]→ 1 + t−1C[[t−1]]. Let us define elements h
(s)
ν ∈ C[h

(•)
• ] by

T1[[t−1]] 3 g 7−→ ν(g) =:
∑
s≥0

h(r)
ν (g)t−r ∈ 1 + t−1C[[t−1]]

We can now prove the main result of this section:

Theorem 5.2.5. The B–algebra of O(Gλµ) is isomorphic to

C[h
(•)
• ]

/〈
h(r)
ν : i ∈ I, ν ∈W$i, r > mi + 〈µ,$i − ν〉

〉
(5.1)

Proof. Suppose that ∆
(s)
β,γ is an element of the ideal from Proposition 5.2.1. Then its restriction to

T1[[t−1]] gives an element of the ideal defining the B–algebra, and all ideal generators come this way.

We have seen above that this restriction is proportional to h
(s)
ν , where ν is the weight of γ.

Suppose that ν is a weight of V ($j), but ν /∈ W$j . Restricting some ∆
(s)
β,γ as above, we see that

h
(s)
ν is in the ideal of the B–algebra for

s > 〈λ− µ,$j〉+ 〈µ,$j − ν〉

Consider also the dominant W–translate ν̃ of ν, so ν = wν̃ for some w ∈ W . Then ν is a weight of

V (ν̃), and by Remark 5.2.2 we see that h
(s)
ν is in the ideal of the B–algebra for

s > 〈λ− µ, ν̃〉+ 〈µ, ν̃ − ν〉

Now, we observe that

〈λ− µ,$j〉+ 〈µ,$j − ν〉 = 〈λ,$j〉 − 〈µ, ν〉 ≥ 〈λ, ν̃〉 − 〈µ, ν〉 = 〈λ− µ, ν̃〉+ 〈µ, ν̃ − ν〉,

so the second bound is stronger than the first.

Finally, we claim that the bound on s coming from V (ν̃) is implied by bounds coming from funda-

mental weights, i.e. h
(s)
ν lies in the ideal from (5.1) for s > 〈λ− µ, ν̃〉+ 〈µ,$j − ν〉. If ν̃ is fundamental,

there is nothing to show. Otherwise, the claim follows by writing ν̃ =
∑
i ν̃i$i. Then ν =

∑
i ν̃iw$i,

and h
(s)
ν can be written as a sum of products of elements h

(r)
w$i . One can verify that the bounds on r for

each h
(r)
w$i imply the above bound on s for h

(s)
ν .

Observe that algebra presented in the theorem makes sense even if µ is not dominant. For simplicity,

we introduce the following notation:

Definition 5.2.6. Let λ ∈ P+ and µ ∈ P with λ ≥ µ. Define

bλµ = C[h
(•)
• ]

/〈
h(r)
ν : i ∈ I, ν ∈W$i, r > mi + 〈µ,$i − ν〉

〉
Let µ ∈ P+. In this case, by the previous theorem bλµ

∼= B
(
O(Gλµ)

)
. By Theorem 4.2.9, in type A we

have Gλµ = Grλµ, further giving

bλµ
∼= B

(
O(Grλµ)

)
(5.2)

In general, the following conjecture is implied by Conjecture 4.2.8, but is possibly weaker:
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Conjecture 5.2.7. For all g and dominant µ, there is an isomorphism bλµ
∼= B

(
O(Grλµ)

)
.

Finally, we show a certain “Weyl invariance” of the above definition:

Lemma 5.2.8. For any j ∈ I, there is an isomorphism

bλµ
∼= bλsjµ, h(s)

ν 7→ h(s)
sjν

Proof. First observe that the map

C[h
(•)
• ] −→ C[h

(•)
• ], h(s)

ν 7→ h(s)
sjν

is well-defined: it extends the map defined on the generating elements h
(s)
$i . Now, let ν ∈ W$i. Then

h
(s)
ν is in the ideal for bλµ for

s > 〈λ, ν̃〉 − 〈µ, ν〉 = 〈λ, ν̃〉 − 〈sjµ, sjν〉

since the pairing is Weyl-invariant. µ̃ is also the dominant Weyl translate of sjµ, so the right-hand side

is precisely the bound for h
(s)
sjν to be in the ideal for bλsjν . By the symmetry of this argument, the claim

follows.

5.3 The non-commutative case

Here is an outline of this section.

1. We give a presentation for Lλµ as a left Y -ideal

Lλµ = Y Sλµ

where Sλµ is an explicit set of elements related to the lifted minors Tβ,γ(u) from §4.3. In this step,

we have partial results for general type, but complete results only in type A.

2. In type A, we use the generators of Lλµ to give generators of the ideal defining the B-algebra.

3. We compute the images of the images of certain lifted minors Tγ,γ(u) under the map Π.

The goal of Step 1 should be thought of as a Yangian version of Proposition 5.2.1, which we achieve

in Step 2. Meanwhile, Step 3 is close in spirit to Theorem 5.2.5.

5.3.1 Relation with higher generators

Since the elements T
(s)
β,γ are defined using the action of U(g), and it is not clear what relations they will

have with the higher level generators E
(s)
i , F

(s)
i , H

(s)
i ∈ Y . Most important to us will be the interaction

with the elements F
(s)
i for s > µi, since in studying Yµ we are limited to these modes.

First some notation. For a pair (i, s) consisting of tuples i = (i1, . . . , id) ∈ Id and s = (s1, . . . , sd) ∈
Zd>0 of any length d ≥ 0, we will denote

F
(s)
i = F

(s1)
i1
· · ·F (sd)

id
∈ Y
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For two such pairs, we will write (i′, s′) < (i, s) if there exists an increasing sequence 1 ≤ a1 < . . . <

ad′ ≤ d, where d′ < d, such that i′ = (ia1 , . . . , iad′ ) and s′ = (sa1 , . . . , sad′ ). In this case, F
(s′)
i′ is a

subword of F
(s)
i .

Let (i, s) be given. We will denote

fi = fid · · · fi1 ∈ U(g)

Note that the order is reversed. We will also denote the analogous composition of Kashiwara operators

f̃i = f̃id · · · f̃i1 . For any i ∈ I consider the monomial crystal B($i, 0) from §2.3. If f̃i(yi,0) 6= 0, define

k1, . . . , kd by

yi,0
f̃i1−→ z−1

i1,k1−2yi,0
f̃i2−→ z−1

i2,k2−2z
−1
i1,k1−2yi,0

f̃i3−→ · · ·
f̃id−→ z−1

id,kd−2 · · · y
−1
i1,k1−2yi,0

Definition 5.3.1. Let Gs
i,i(u) ∈ C[u] be the polynomial

Gs
i,i(u) =

{
umi(u+ 1

2k1)s1−1 · · · (u+ 1
2kd)

sd−1, if f̃i(yi,0) 6= 0,

0, if f̃i(yi,0) = 0.

for k1, . . . , kd as above.

For any formal series X(u) =
∑
s∈ZX

(s)u−s ∈ Y [[u, u−1]], let us denote the principal part by

X(u) =
∑
s>0X

(s)u−s. The following basic fact will be useful later.

Lemma 5.3.2. Suppose X(u) ∈ Y ((u−1)). For any polynomial f(u) ∈ C[u], the coefficients of f(u)X(u)

are linear combinations of the coefficients of X(u).

We will also denote

Y ·X(u) = spanC

{
yX(s) : y ∈ Y, s ∈ Z

}
[[u−1]]

Recall from Corollary 4.3.6 that we have

[· · · [[Ai(u), F
(1)
i1

], F
(1)
i2

], · · · , F (1)
id

] = Tv$i ,fid ···fi1v$i (u) = Tv$i ,fiv$i (u)

This leads to the formula

Ai(u)F
(1,...,1)
i = Tv$i ,fiv$i (u) +

∑
(i′,s′)<(i,s)

Y · Tv$i ,fi′v$i (u)

We will need to generalize this formula where (1, . . . , 1) is replaced by an arbitrary sequence s.

Proposition 5.3.3. Suppose that $i is a minuscule coweight. Then for any (i, s), we have

umiAi(u)F
(s)
i = Gs

i,i(u)Tv$i ,fiv$i (u) +
∑

(i′,s′)<(i,s)

Y ·Gs′

i,i′(u)Tv$i ,fi′v$i (u) (5.3)

(In this proposition, we include the case where fiv$i = 0. In this case, fiv$i = 0, so even though

Gs
i,i(u) is not defined, by convention we have Gs

i,i(u)Tv$i ,fiv$i (u) = 0.)
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Note that Proposition 5.3.3 is equivalent to a similar statement where equation (5.3) is replaced by

Gs
i,i(u)Tv$i ,fiv$i (u) = umiAi(u)F

(s)
i +

∑
(i′,s′)<(i,s)

Y · umiAi(u)F
(s′)
i′ (5.4)

Proof of the proposition. The proof will proceed by induction on d, which is the length of i and s.

(i) The case d = 1: Using Proposition 4.3.3, for any s > 0 we have the relation

[Ai(u), F
(s+1)
i ] =

(∑
r>0

F
(s+r)
i u−r

)
Ai(u)

Now, by Corollary 4.3.6, Tv$i ,v$i (u) = Ai(u) and Tv$i ,fiv$i (u) = [Ai(u), F
(1)
i ] = Fi(u)Ai(u). Using

this, rewrite the above relation:

[Ai(u), F
(s+1)
i ] = usTv$i ,fiv$i (u)− (F

(1)
i us−1 + F

(2)
i us−2 + . . .+ F

(s)
i )Tv$i ,v$i (u)

Rearranging terms, multiplying by umi , and taking principal parts, it follows that

umiAi(u)F
(s+1)
i = us+miTv$i ,fiv$i (u)− (F

(1)
i us−1 + . . .+ F

(s)
i + F

(s+1)
i )umiTv$i ,v$i (u) =

= us+miTv$i ,fiv$i (u) + Y · umiTv$i ,v$i (u)

Since f̃i(yi,0) = z−1
i,−2yi,0 in B($i, 0), so for i = (i) and s = (s+ 1) we have Gs

i,i(u) = umi+s. Hence the

claim holds in the case i = (i). If i = (j) where j 6= i, then [Ai(u), F
(s+1)
j ] = 0 and fjv$i = 0, so the

claim also holds.

(ii) The inductive step in d: Assume the claim holds for all sequences (i′, s′) of length ≤ d. We will

prove the claim for (j, r) where j = (i1, . . . , id, j), r = (s1, . . . , sd, r), by induction on r. We continue to

denote i = (i1, . . . , id) and s = (s1, . . . , sd).

When r = 1, there is no contribution coming from fj to any of the polynomials Gs′

i,i′(u), as the

exponent of any corresponding linear factor is 0. We multiply equation 5.3 on the right by F
(1)
j to give

umiAi(u)F
(r)
j = Gs

i,i(u)Tv$i ,fiv$i (u)F
(1)
j +

∑
(i′,s′)<(i,s)

Y ·Gs′

i,i′(u)Tv$i ,fi′v$i (u)F
(1)
j

Now we apply Corollary 4.3.6 to prove the statement.

For the inductive step in r, we consider two cases.

(a) The case fjv$i = 0: In this case, we prove a stronger version of equation (5.3):

umiAi(u)F
(s)
i F

(r)
j =

∑
(i′,s′)<(i,s)

Y ·Gs′

i,i′(u)Tv$i ,fi′v$i (u)

Again the case r = 1 holds using Corollary 4.3.6. To prove the inductive step, recall the element Si from

Lemma ??, which satisfies [Si, F
(r)
j ] = −aijF (r+1)

j . Assuming the above formula holds up to r, we wish

to conclude the case r + 1. Bracketing both sides of the formula for r by Sj , we get

umiAi(u)[Sj , F
(s)
i ]F

(r)
j − 2umiAi(u)F

(s)
i F

(r+1)
j =

∑
(i′,s′)<(i,s)

Y · [Sj , Gs′

i,i′(u)Tv$i ,fi′v$i (u)]
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since [Sj , Ai(u)] = 0. The second term on the left is the one we want to express. The inductive

assumption applies to the first term on the left, and for the right hand side we claim that

[Sj , G
s′

i,i′(u)Tv$i ,fi′v$i (u)] =
∑

(i′′,s′′)<(i′,s′)

Y ·Gs′′

i,i′′(u)Tv$i ,fi′′v$i (u)

Indeed, this follows by the inductive assumption on d and equation (5.4), since the action of [Sj , ·] on

products F
(s′′)
i′′ shifts exponents.

(b) The case fjv$i 6= 0: Choose p maximal such that ip = j or ip ∼ j. Thus

F
(s)
i = F

(s1)
i1
· · ·F (sp)

ip
F

(r)
j F

(sp+1)
ip+1

· · ·F (sd)
id

Suppose that ip = j. Since $i is miniscule, if fip · · · fi1v$i 6= 0 then fjfip · · · fi1v$i = 0. Thus we

conclude that ip ∼ j.
We will use the following identity, which follows from Definition 4.1.1:

[F
(s+1)
ip

, F
(r+1)
j ] = [F

(r+s+1)
ip

, F
(1)
j ]− 1

2

r∑
n=1

(F
(r+s+1−n)
ip

F
(n)
j + F

(n)
j F

(r+s+1−n)
ip

) (5.5)

Now, by the inductive assumption in d,

umiAi(u)F
(s1)
i1
· · ·F (sp−1)

ip−1
= G

(s1,...,sp−1)

i,(i1,...,ip−1)(u)Tv$i ,fip−1
···fi1v$i (u) + . . .

Since, fjfipfip−1
· · · fi1v$i 6= 0, then since $i is miniscule, we must have

fipfjfip−1 · · · fi1v$i = 0

Consider equation (5.5) for s = sp. By the above equation, case (a) applies to all summands of the form

F
(a)
j F

(b)
ip

. Therefore, modulo lower terms umiTv$i ,v$i (u)F
(r)
j is equal to

umiTv$i ,v$i (u)F
(s1+1)
i1

· · ·
(
F

(sp+r+1)
ip

F
(1)
j − 1

2

r∑
n=1

F
(sp+r+1−n)
ip

F
(n)
j

)
· · ·F (sd+1)

id

By the definition of p, we can commute all factors F
(n)
k to the far right. Now apply the inductive

assumption, valid since all exponents n < r + 1. Modulo lower terms, we get the principal part of

(
(u+ 1

2kp)
sp+r − 1

2

s∑
n=1

(u+ 1
2kp)

sp+r−n(u+ 1
2k)n−1

)∏
q 6=p

(u+ 1
2kq)

sqTv$i ,fjv$i (u)

where k is defined by f̃j f̃id · · · f̃i1(yi,0) = z−1
j,k−2z

−1
id,kd−2 · · · z

−1
i1,k1−2yi,0. Now, by the definition of p it

follows that

k = kp + 1

so the claim holds by the v = u+ 1
2kp, c = 1

2 case of the polynomial identity

(v − c)s = vs − c
s∑

n=1

vs−n(v − c)n−1
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Lemma 5.3.4. Assume that (i, s) is such that ia = ib implies sa = sb, for any a, b. Then Gs
i,i(u) only

depends on f̃i(yi,0), i.e. it is independent of the path taken from yi,0 to f̃i(yi,0) in the crystal.

Proof. Write f̃i(yi,0) = yi,0z
−1
U . Such a decomposition is unique, c.f. Remark 2.3.2. From the assumption

on s, it is easy to see that Gs
i,i only depends on U:

Gs
i,i(u) = umi

∏
(j,k−2)∈U

(u+ 1
2k)sj

where sj is defined to be sa for any ia = j.

Definition 5.3.5. Let $i be miniscule and γ ∈ V ($i) a nonzero weight vector. Write γ = cfiv$i for

some i = (i1, . . . , id) and c ∈ C∗, and set

s = (µi1 + 1, µi2 + 1, . . . , µid + 1)

We define Gγ(u) = Gs
i,i(u). This definition is independent of i, by the previous Lemma.

Note that if µ = 0, then Gγ(u) = umi . In general, Gγ(u) is a polynomial of degree 〈λ, ωi〉 − 〈µ, γ〉.

Lemma 5.3.6. Let $i be miniscule. Suppose that γ′ lies above γ in V ($i), i.e. γ′ 6= 0 is proportional

to ej` · · · ej1γ for some i1, . . . , id. Then Gγ′(u) divides Gγ(u).

Proof. Proportionality does not affect the definition of Gγ(u), so we may assume all scalars are 1. We

can write γ′ = fjd · · · fj`+1
vi for some d > ` and indices j`+1, . . . , jd, and hence

γ = fj1 · · · fj`γ′ = fj1 · · · fj`fjd · · · fj`+1
vi

Indeed if ejv 6= 0 for a weight vector v ∈ V ($i), then fjejv = v since $i is miniscule. So γ = fi(vi)

for i = (i1, . . . , id) := (j`+1, . . . , jd, j`, . . . , j1), and Gγ(u) = Gs
i,i(u) with s as defined above. Meanwhile,

Gγ′(u) = Gs′

i,i′(u) where i′ = (i1, . . . , id−`) and s′ = (s1, . . . , sd−`), so Gγ′(u) divides Gγ(u).

5.3.2 Partial description of the left ideal

We now are in a position to give a partial description of Lλµ.

Definition 5.3.7. We define

1. Sλµ to be the set of all coefficients of all series Gγ(u)Tβ,γ(u), for i ∈ I miniscule and β, γ ∈ V ($i)

weight vectors,

2. (Sλµ)≤ to be the set of all coefficients of all series Gγ(u)Tv$i ,γ(u), for i ∈ I miniscule and γ ∈ V ($i)

a weight vector.

From equations (5.3) and (5.4), we deduce:

Corollary 5.3.8. There is an equality of (Y, Y ≤µ )-bimodules:

Y {A(s)
i : $i miniscule, s > mi}Y ≤µ = Y (Sλµ)≤
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Conjecture 5.3.9. The subspace Y Sλµ is invariant under the right action of C[A
(r)
i ].

Theorem 5.3.10. If Conjecture 5.3.9 holds, then

Y {A(s)
i : $i miniscule, s > mi}Yµ = Y Sλµ

Proof. By Corollary 4.3.6, we have

[E
(1)
i , Gγ(u)Tβ,γ(u)] = Gγ(u)Tfiβ,γ(u)−Gγ(u)Tβ,eiγ(u)

Note that eiγ lies above γ in the sense of Lemma 5.3.6, hence Geiγ(u) divides Gγ(u). By Lemma 5.3.2

the coefficients of

Gγ(u)Tβ,eiγ(u)

are linear combinations of the coefficients of Geiγ(u)Tβ,eiγ(u). It follows that Y Sλµ is invariant under

right multiplication by the elements E
(1)
i . The higher modes E

(r)
i are obtained from E

(1)
i by multiplying

by elements of C[A
(s)
i ], so if the conjecture holds we conclude that Y Sλµ is right invariant under Y ≥µ .

It remains to show that Gγ(u)Tβ,γ(u)F
(s)
k ∈ Y Sλµ for all s > µk, which we prove by induction on

ht($i − β). The base case when β = v$i follows from Corollary 5.3.8. For the inductive step, write

β =
∑
j fjβj . Then by Corollary 4.3.6,

Tβ,γ(u) =
∑
j

(
[E

(1)
j , Tβj ,γ(u)] + Tβj ,ejγ(u)

)
Therefore,

Tβ,γ(u)F
(s)
k =

∑
j

(
E

(1)
j Tβj ,γ(u) + Tβj ,ejγ(u)

)
F

(s)
k +

∑
j

Tβj ,γ(u)E
(1)
j F

(s)
k

Multiply both sides by Gγ(u), and take principal parts. Recall also that Gejγ(u) divides Gγ(u). For the

first sum on the right-hand side, we can apply the inductive assumption since ht($i−βj) < ht($i−β).

For the second sum, apply the identity

E
(1)
j F

(s)
k = F

(s)
k E

(1)
j + δjkH

(s)
k

We know from the above that Y ≥µ preserves Y Sλµ , so we are again in the position to apply the inductive

assumption.

If we combine Lemma 5.1.3 with Theorem 5.3.10, then we see that the ideal of the B-algebra of

Y λµ (R) contains Π(Y Sλµ) (with equality if g is of type A, cf. Corollary 5.3.14). Now we will see that to

compute Π(Y Sλµ) we only need “principal” minors.

Proposition 5.3.11. Π(Y Sλµ) is generated as an ideal of C[H
(•)
• ] by the coefficients of Π(Gγ(u)Tγ,γ(u)),

running over all minuscule $i and weight vectors γ ∈ V ($i).

Proof. We will first rule out several cases using a PBW basis in “FHE” order. We then prove the claim

by induction.

Π(Y Sλµ) is spanned by coefficients of series of the form y = Π(x · Gγ(u)Tβ,γ(u)) where x ∈ Y and

β, γ ∈ V ($i) are weight vectors. Note that ν = wt γ − wtβ is the weight of Tβ,γ(u) with respect to },

which lies in the root lattice.
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If ht ν > 0 then T
(r)
β,γ contains factors E

(s)
j on the right when written in PBW form, so y = 0.

Assuming ht ν ≤ 0, it suffices to consider x = FHE a PBW monomial of weight −ν. If F 6= 1, then

HE ·T (r)
β,γ contains factors E

(s)
j on the right when written in PBW form, so y = 0. Since Π is equivariant

with respect to left multiplication by H, we may assume H = 1.

Working with generators B
(s)
i instead of E

(s)
i , we are reduced to showing that all coefficients of any

series

Π
(
B

(s1)
j1
· · ·B(sk)

jk
Gγ(u)Tβ,γ(u)

)
lie in the ideal as claimed, where

ν = wt γ − wtβ = −αj1 − . . .− αjk

We will do this by induction on filtered degree d = s1 + . . .+ sk, with an inner induction on k = −ht ν.

Note that when all sp = 1, we may push each B
(sp)
ip

to the right using Corollary 4.3.6. Applying Π, the

result is a sum of terms Gγ(u)Tγ′,γ′(u) with γ′ above γ in V ($i). Since Gγ′(u) divides Gγ(u), the claim

follows.

From Proposition 4.2.5 we have that

(u− v){∆fjv$j ,v$j
(u),∆β,γ(v)} = c∆β,γ(v)∆fjv$j ,v$j

(u) + ∆fjβ,γ(v)∆v$j ,v$j
(u)

+
∑
α∈∆+

(
∆eαβ,γ(v)∆fαfjv$j ,v$j

(u)−∆fjv$j ,fαv$j
(u)∆β,eαγ(v)

)

where c = (sj$j ,wtβ)− ($j ,wt γ). Multiplying by u−1/(1−u−1v) and taking the coefficient of u−s on

both sides expresses {∆(s)
fjv$j ,v$j

,∆β,γ(v)} as a sum, where exponents of terms coming from series in u

decrease in degree (i.e. s decreases). This continues to hold if we multiply both sides of the identity by

Gγ(v) and take principal parts in v.

Because we have a filtered deformation, the lifted version of this identity is true modulo lower filtered

terms. All summands lifting those written above lie in Y Sλµ , and therefore the lower filtered terms also

lie in Y Sλµ . So, the inductive hypothesis applies to these lower terms. Note also that the first and third

terms map to zero under Π, while the second and fourth terms have smaller k.

5.3.3 Calculations in type A

We assume that g = sln. In this case, we will prove Conjecture 5.3.9. Since all fundamental weights are

miniscule in type A, by Theorem 5.3.10 it will follow that

Lλµ = Y Sλµ

We will make use of the following explicit formula, given in [Mol07, Example 1.15.8]:

Lemma 5.3.12. In Y (gln), for a,b ⊂ {1, . . . , n} of size i and c,d ⊂ {1, . . . , n} of size `,

[Qa,b(u), Qc,d(v)] =
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=

min{i,`}∑
p=1

(−1)p−1p!

(u− v − i+ 1) · · · (u− v − i+ p)

∑
i1<···<ip
j1<···<jp

(Qa′,b(u)Qc′,d(v)−Qc,d′(v)Qa,b′(u))

where primes indicate that elements have been exchanged according to the indices i1 < · · · < ip and

j1 < · · · < jp:

a′ = {a1, . . . , cj1 , . . . , cjp , . . . , ai} and c′ = {c1, . . . , ai1 , . . . , aip , . . . , c`},

b′ = {b1, . . . , dj1 , . . . , djp , . . . , bi} and d′ = {d1, . . . , bi1 , . . . , bip , . . . , d`}

Proposition 5.3.13. The subspace Y Sλµ is invariant under the right action of (Yµ)≥. In particular,

Conjecture 5.3.9 holds.

Proof. We will prove that for any weight vectors β, γ ∈ V ($i),

Gγ(u)Tβ,γ(u)T
(r)
δ,v$`

∈ Y Sλµ

for all δ ∈ V ($`) and r ≥ 1. Note that the elements T
(r)
δ,v$`

generate Y ≥µ .

We will establish this by induction on r. When r = 1 the elements T
(1)
δ,v$i

lie in the Borel subalgebra

b ⊂ g ⊂ Y , so we can directly apply Corollary 4.3.6. Since γ remains fixed under this action, the claim

holds.

For the inductive step, we will use Lemma 5.3.12. Transporting this identity under the isomorphism

φ from Corollary 4.3.10, we get

[Tβ,γ(u), Tδ,v$` (v)] =

min{i,`}∑
p=1

(−1)p−1p!

(u− v + i−`
2 − i+ 1) · · · (u− v + i−`

2 − i+ p)
×

×
∑(

Tβ′,γ(u)Tδ′,v$` (v)− Tδ,v$′
`

(v)Tβ,γ′(u)
)

with primes indicating exchanges as per the Lemma. Expand each of the rational functions (−1)p−1p!/ · · ·
in the domain C[u][[v−1]]. Multiply both sides by Gγ(u), and take the principal part in u. We wish to

extract the coefficient of v−r on both sides of the resulting identity.

Consider a term Tβ′,γ(u)Tδ′,v$` (v). When we extract the coefficient of v−r, since we have multiplied

by an element of C[u][[v−1]] on the right-hand side, we get a sum of products Gγ(u)Tβ′,γ(u)T
(s)
δ′,$`

where

s < r. By the inductive hypothesis, these summands all lie in Y Sλµ .

Consider now a term Tδ,$′`(v)Tβ,γ′(u). Since $` is the highest weight, the element γ′ is a weight

vector lying above γ in V ($i), in the sense of Lemma 5.3.6. So Gγ′(u) divides Gγ(u), and therefore

these summands already lie in Y Sλµ .

By Theorem 5.3.10, it follows that:

Corollary 5.3.14. For g of type A, we have Lλµ = Y Sλµ .

Applying Proposition 5.3.11, we can now give an explicit description of the B-algebra following §5.1.

Corollary 5.3.15. For g of type A, the B–algebra of Y λµ (R) is the quotient of the ring C[H
(•)
• ] by

the ideal generated by the coefficients of Π(Gγ(u)Tγ,γ(u)), running over all i ∈ I and weight vectors

γ ∈ V ($i).
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5.3.4 Computing the images Π(Tγ,γ(u))

In this section we will describe explicitly the images Π(Tγ,γ(u)), for extremal weight vectors γ ∈W$i.

Recall that for a locally finite representation V of g, i.e. one in which every vector lies in a finite-

dimensional sub-representation, there are well-defined operators

si = exp(ei) exp(−fi) exp(ei)

These operators satisfy the braid relations, and therefore define an action of the braid group Bg, but

this action does not factor through W in general (rather a Tits extension W̃ ). However, for w ∈W there

is still a well-defined operator w defined as si` · · · si1 where w = si` · · · si1 is any reduced expression. If

Vη denotes a weight space for h on V , then

w(Vη) = Vwη,

see for example [Kum02, Lemma 1.3.5].

Lemma 5.3.16. Let g act on an algebra A by derivations.

(a) Suppose that a, b ∈ A are both contained in finite dimensional g–invariant subspaces of A. Then

so are ab and a+ b.

(b) The action of g on A is locally finite if and only if for some (equivalently, any) generating set X
for A, every a ∈ X is contained in a finite dimensional g–invariant subspace.

Proof. Part (b) follows from (a). For (a), suppose that a ⊂ U, b ⊂ V where U, V are finite dimensional

and g-invariant. Then U + V is g–invariant, and so is UV since g acts by derivations. Both spaces are

finite dimensional, so the claim holds.

Lemma 5.3.17. The adjoint action of g on Y under the embedding Ug ↪→ Y is locally finite.

Proof. Y is generated by the elements T
(r)
β,γ . These elements all lie in finite dimensional g–invariant

subspaces by Corollary 4.3.6, so part (b) of the previous lemma applies.

By the lemma, we can apply the construction discussed above to the adjoint action of g on Y . Note

that since g acts on Y by derivations, the corresponding operators si are algebra automorphisms. Under

the action of g, we get a Q–grading Y =
⊕

α∈Q Y (α) (we use the notation Y (α) to avoid confusion with

our notation for shifted Yangians), where

degF
(r)
i = −αi, degH

(r)
i = 0, degE

(r)
i = αi

Lemma 5.3.18. For any vector γ ∈ V ($i) and w ∈W , we have

w(T (r)
γ,γ) = T

(r)
wγ,wγ

In particular, si(Ai(u)) = Di(u) and si(Aj(u)) = Aj(u) for all i 6= j.
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Proof. It suffices to consider w = sj . By Corollary 4.3.6, we must find the images of sj under the

(integrated) automorphisms ι ◦ ω and ι of the adjoint group Gad. An SL2 calculation shows that

ι ◦ ω(sj) = ι(sj) = s−1
j

If γ ∈ V ($i) is a weight vector, then s2
jv = (−1)〈wt γ,αj〉v by [Kum02, Lemma 1.3.5.]. Therefore

sj(T
(r)
γ,γ) = T

(r)

s−1
j γ,s−1

j γ
= (−1)2〈wt γ,αj〉T

(r)
sjγ,sjγ

= T
(r)
sjγ,sjγ

To describe the images Π(Tγ,γ(u)), we introduce some more notation. For an element w ∈ W , the

inversion set is defined to be

∆w =
{
β ∈ ∆+ : w−1β ∈ ∆−

}
If w = sid · · · si1 is a reduced expression, then [Kum02, Lemma 1.3.14]

∆w =
{
αid , sidαid−1

, . . . , sidsid−1
· · · si2αi1

}
(5.6)

Consider a weight γ ∈ W$i. Write γ = w$i, and fix a reduced decomposition w = sid · · · si1 . By

abuse of notation, we will also denote the corresponding vector γ = wv$i ∈ V ($i). This is a minor

abuse, as this weight space is 1-dimensional.

Recall the fundamental monomial crystal B($i, 0) from §2.3. There is a unique element qγ of weight

γ, and we can write

qγ = yi,0z
−1
U =

∏
j,k

y
bj,k
j,k

for some tuple of multisets U = (Ui)i∈I . We will adopt the convention that Ui(k) denotes the multiplicity

of the integer k in Ui.

Theorem 5.3.19. With notation as above,

Tγ,γ(u) = Ai(u)
∏
j,k

Hj(u+ 1
2k)Uj(k−2) +

∑
β∈∆w

Y (−β)Y (β)

In particular,

Π(Tγ,γ(u)) = Ai(u)
∏
j,k

Hj(u+ 1
2k)Uj(k−2)

Proof. The second claim follows from the first, by noting that for any β ∈ ∆+ the space Y (−β)Y (β) is

in the kernel of Π.

By definition, we have Tv$i ,v$i (u) = Ai(u), and

Tfiv$i ,fiv$i (u) = Di(u) = Hi(u)Ai(u) + Fi(u)Ai(u)Ei(u) = Hi(u)Ai(u) + Y (−αi)Y (αi)

so the claim holds for these elements. We proceed will by induction on the length of w.

Assuming the claim holds for w, let us prove it for sdw. Observe that the relationship between Hi(u)
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and Aj(u)’s in (4.3) is analogous to that between z−1
i,k−2 and yj,k in (2.1). In particular, we can rewrite

Tγ,γ(u) = X(u) ·
∏
k

Ad(u+ 1
2k)bj,k +

∑
β∈∆w

Y (−β)Y (β)

for some series X(u) ∈ C[A
(s)
j : j 6= d][[u−1]]. Therefore, by the previous lemma

Tsdγ,sdγ(u) = sd (Tγ,γ(u))

= X(u) ·
∏
k

Dd(u+ 1
2k)bd,k +

∑
β∈∆w

Y (−sdβ)Y (sdβ)

= X(u) ·
∏
k

(
Ad(u+ 1

2 )Hd(u+ 1
2k)
)bd,k

+ Y (−αd)Y (αd) +
∑
β∈∆w

Y (−sdβ)Y (sdβ)

=

(
Ai(u)

∏
j,k

Hj(u+ 1
2k)

)∏
k

Hd(u+ 1
2k)bd,k +

∑
β∈∆sdw

Y (−β)Y (β)

This agrees with the expression for the monomial qsdγ from Proposition 2.3.3.

Recall that for a set of parameters R = (Ri)i∈I , we denote Ri(u) =
∏
c∈Ri(u−

1
2c). By taking into

account the expressions (4.2) and (4.3), we get

Corollary 5.3.20. With notation as above,

Π
(
Gγ(u)Tγ,γ(u)

)
=
(∏
j,k

Rj(u+ 1
2k)Uj(k−2)

)(∏
j,k

(
(u+ 1

2k)mjAj(u+ 1
2k)
)bj,k )

5.4 A conjectural description of the B-algebra

Based on Corollary 5.3.15, as well as Corollary 5.3.20, we propose the following definition. For every

element q ∈ B($i, 0), we write q = yi,0z
−1
U =

∏
j,k y

bj,k
j,k , and define an element of C[H

(•)
• ]((u−1)) by

Hq(u) =
(∏
j,k

Rj(u+ 1
2k)Uj(k−2)

)(∏
j,k

(
(u+ 1

2k)mjAj(u+ 1
2k)
)bj,k)

(5.7)

Definition 5.4.1. Let λ, µ ∈ P with λ ≥ µ.

(a) The algebra Bλµ(R) is defined to be the quotient C[H
(•)
• ] by the ideal generated by all coefficients

of the principal parts of Hq(u), over all extremal elements q ∈ B($i, 0) (i.e. having weight in

W$i) and i ∈ I.

(b) The algebra B̃λµ(R) is defined to be the quotient of C[H
(•)
• ] by the ideal generated by all coefficients

of the principal parts of Hq(u), over all elements q ∈ B($i, 0) and i ∈ I.

Remark 5.4.2. The series corresponding to the highest weight element yi,0 ∈ B($i, 0) is Hyi,0(u) =

umiAi(u), and so the elements A
(r)
i with r > mi are in the ideal defining B̃λµ(R). Because of this, we

may think of B̃λµ(R) as a quotient of

C[A
(s)
i : i ∈ I, 1 ≤ s ≤ mi]
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In type A there is no distinction between these algebras, since all V ($i) are miniscule. By Corollary

5.3.15 and Corollary 5.3.20, we have

Corollary 5.4.3. In type A, if µ ∈ P+ then Bλµ(R)) = B̃λµ(R) is isomorphic to the B-algebra for Y λµ (R).

For general g, however, it is not clear which (if either) algebra is closest to the true B–algebra B(Y λµ ).

There are trade-offs:

(1) We will show in Chapter 8 that there is a surjective map from Bλµ(R) onto the equivariant coho-

mology ring of a Nakajima quiver variety. We do not know how to show that the “non-extremal”

relations of B̃λµ(R) are in the kernel.

(2) The algebra B̃λµ(R) has nice combinatorial properties, and in particular we can compute its max-

imal spectrum. This proof makes use of the fact that we have taken all q in its definition, and we

do not know whether it holds for Bλµ(R).

The algebras Bλµ(R) and B̃λµ(R) are naturally filtered, with degH
(r)
i = r. Recall the algebra bλµ from

Definition 5.2.6.

Lemma 5.4.4. For all µ ∈ P there is a surjection

bλµ −→ grBλµ(R), h
(r)
i 7→ H

(r)
i ,

and similarly for B̃λµ(R).

Proof. The map h
(r)
i 7→ H

(r)
i defines a surjection from C[h

(r)
i ] onto grBλµ(R), and one can verify that

the generators of the ideal defining bλµ map to zero (c.f. Proposition 5.4.8 below).

The above lemma provides some evidence that Bλµ(R) = B̃λµ(R), since the B–algebra of O(Gλµ) is

generated by extremal elements. Being optimistic, we hope for the following:

Conjecture 5.4.5. For all g, if µ ∈ P+ then Bλµ(R) = B̃λµ(R) ∼= B
(
Y λµ (R)

)
.

Remark 5.4.6. (a) We have defined Bλµ(R) for all µ ∈ P with λ ≥ µ, even though this only corre-

sponds to a slice Grλµ when µ ∈ P+. Rather, in general this should correspond to a generalized slice

Wλ
µ as recently defined by Braverman, Finkelberg and Nakajima [BFN16a, §2(ii)]. We believe that

the conjecture should extend to the quantization of this variety.

(b) The conjecture is closely related to Conjecture 5.3.9 above; ideally, we would want that Lλµ is

generated as a left ideal by the coefficients of Gγ(u)Tβ,γ(u) with β, γ corresponding to extremal

weights. Put differently, it would be sufficient to have a general analog of Corollary 5.3.15, as well

as of Corollary 5.3.20 to the case of γ not extremal.

Our next result shows that Bλµ(R) is only interesting if µ is a weight of the representation V (λ), i.e.

only if

µ ∈ P ∩ Conv(Wλ) =
⋂
w∈W

w

(
λ−

⊕
i

Z≥0αi

)

Lemma 5.4.7. If µ 6∈ P ∩ Conv(Wλ), then Bλµ(R) = 0 = B̃λµ(R).
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Proof. If µ 6∈ P ∩Conv(Wλ), then there exists w ∈W such that µ 6∈ wλ−w
⊕

i Z≥0αi. So there exists

i ∈ I such that 〈λ − w−1µ,$i〉 < 0. Consider the element q ∈ B($i, 0) corresponding to the extremal

weight w$i. We claim that

Hq(u) = u〈λ−w
−1µ,$i〉 + . . . = Hq(u)

where . . . denotes terms of more negative degree in u. Assuming this claim, it follows that the coefficient

“1” of u〈λ−w
−1µ,$〉 is in the ideal defining Bλµ(R), hence this algebra is zero. Note that B̃λµ(R) is a

quotient of Bλµ(R), so is also zero.

The claim follows from Lemma 7.2.12 and the proof of Theorem 8.3.1 below; we remark that this

could also be proven combinatorially by computing the leading term of Hq(u) near u =∞.

5.4.1 Conjectural B–algebras with parameters

As with the parametric version Y λµ of Y λµ (R) defined in (4.5), we can define algebras Bλµ and B̃λµ . These

are algebras are quotients of the polynomial ring

Pλµ := C[~, R(s)
i , A

(r)
i : i ∈ I, 1 ≤ s ≤ λi, 1 ≤ r ≤ mi] (5.8)

by ideals as above, but generated using the series

Hq(u) =
(∏
j,k

Rj(u+ 1
2k~)Uj(k−2)

)(∏
j,k

(
(u+ 1

2k~)mjAj(u+ 1
2k~)

)bj,k) (5.9)

The algebras Pλµ , B
λ
µ and B̃λµ are all Z≥0–graded, with

degR
(s)
i = degA

(s)
i = s, deg ~ = 1

By specializing the parameters to R×{1} ∈ SpecC[R
(s)
i , ~], we recover the algebras Bλµ(R) and B̃λµ(R).

We can also specialize all parameters to be zero:

Proposition 5.4.8. Under the specialization C[R
(s)
i , ~] −→ C defined by R

(s)
i 7→ 0 and ~ 7→ 0, we have

Bλµ ⊗C[R
(s)
i ,~]

C ∼= bλµ

as quotients of C[h
(•)
• ]. This is also true for B̃λµ.

Proof. The image of A
(r)
i is h

(r)
$i . We verify that the generators of the ideal of Bλµ specialize to the

generators of the ideal of bλµ. Consider Hq(u), and suppose that q corresponds to the extremal weight

ν ∈W$i. It specializes to (∏
j,k

uUj(k−2)λj
)(∏

j,k

(
umjh$j (u)

)bj,k)
We claim that this is equal to u〈λ−µ,$i〉+〈µ,$i−ν〉hν(u), where hν(u) =

∑
r≥0 h

(r)
ν u−r. Or equivalently,

that ∑
j,k

Uj(k − 2)λj +
∑
j,k

bj,kmj = 〈λ− µ,$i〉+ 〈µ,$i − ν〉

and
∑
j,k bj,k$j = ν. The second equality follows from the definition of wt(q) given in §2.2, while the

first equality is proven in the proof of Theorem 8.3.1.
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The case of B̃λµ is analogous, with a minor complication: for the generators Hq(u) where q is not

extremal, we need to make use of the proof of Theorem 5.2.5. We omit this since we will not use this

result in the sequel.

Conjecture 5.4.9. For all g and µ ∈ P+, we have a graded isomorphism Bλµ
∼= B

(
Y λµ
)

5.4.2 Coproducts

In §4.1.4, we described a family of conjectural “coproduct” maps,

∆λ′,λ′′

µ′,µ′′ : Y λµ −→ Y λ
′

µ′ ⊗C[~] Y
λ′′

µ′′

By Lemma 3.3.3 (b), each ∆λ′,λ′′

µ′,µ′′ would naturally induce a map of B–algebras

B
(
Y λµ ) −→ B

(
Y λ
′

µ′
)
⊗C[~] B

(
Y λ
′′

µ′′
)

Note that this only makes sense when all of the above coweights are dominant (c.f. Remark 4.1.8 (a)).

We will show now that analogous maps exist for the algebras Bλµ and B̃λµ , and will not need to impose

dominance condition on µ, µ′ and µ′′.

Remark 5.4.10. Let λ, µ ∈ P+ with λ ≥ µ. Let us also assume that the conjectural coproduct ∆λ′,λ′′

µ′,µ′′

on Y λµ exists (with µ′, µ′′ ∈ P+), and that there is an isomorphism B
(
Y λµ
) ∼= Bλµ as per Conjecture 5.4.5.

Then the coproduct on Bλµ defined below will agree with the natural coproduct on B
(
Y λµ
)

described above.

Indeed, the coproduct (4.7) on Ỹµ maps Ai(u) to Ai(u)⊗ Ai(u) modulo terms in the kernel of the ideal

defining the B–algebra of Yµ′ ⊗ Yµ′′ (this follows e.g. from the proof of [CP95, Proposition 12.1.12]).

To this end, suppose that λ = λ′ + λ′′ are elements of P+, and that µ = µ′ + µ′′ are elements of P ,

such that λ ≥ µ, λ′ ≥ µ′ and λ′′ ≥ µ′′. Consider the corresponding algebras Pλµ , Pλ′µ′ and Pλ′′µ′′ , and the

homomorphism

Pλµ −→ Pλ
′

µ′ ⊗C[~] Pλ
′′

µ′′ , (5.10)

defined by

Ri(u) 7−→ R′i(u)⊗R′′i (u),

Ai(u) 7−→ A′i(u)⊗A′′i (u),

~ 7−→ ~⊗ 1 = 1⊗ ~

We have again added primes to distinguish the elements of these algebras (these are not derivatives!).

The next result follows immediately from the definition (5.9).

Lemma 5.4.11. Under the homomorphism (5.10), for any q ∈ B($i, 0) we have

Hq(u) 7−→ H ′q(u)⊗H ′′q (u)

Corollary 5.4.12. The map (5.10) descends to define maps

∆λ′,λ′′

µ′,µ′′ : Bλµ −→ Bλ
′

µ′ ⊗C[~] B
λ′′

µ′′ ,
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and analogously for B̃λµ.

Remark 5.4.13. (a) As in the case of of the map on algebras Y λµ , we expect that for fixed λ = λ′+λ′′

the sum

Bλµ −→
⊕

µ=µ′+µ′′

Bλ
′

µ′ ⊗C[~] B
λ′′

µ′′

is injective. The sum is over µ, µ′, µ′′ ∈ P , which makes sense here even though we cannot presently

define the analogous maps for Y λµ .

(b) The above results go through for the specialized algebras Bλµ(R), etc. In this case, tensor products

should be taken over C.

5.5 The case of sl2

Let g = sl2, and fix λ ≥ 0 and µ ∈ Z with λ− µ = 2m ≥ 0. In this case,

Pλµ = C[~, R(1), . . . , R(λ), A(1), . . . , A(m)]

There is a single fundamental weight $, and W$ = {$, s$}. The fundamental crystal is

B($, 0) : y0
f̃−→ y−1

−2

and we can write y−1
−2 = y0z

−1
−2 . Therefore, the series from (5.9) are

H$(u) = umA(u), Hs$(u) =
R(u)

(u− ~)mA(u− ~)

The relations Hq(u) = 0 defining the B–algebra are, respectively, that A(r) = 0 for r > m and

(u− ~)m +A(1)(u− ~)m−1 + . . .+A(m) divides uλ +R(1)uλ−1 + . . .+R(λ)

We should interpret “divides” as follows: do polynomial long division, and set the coefficients of the

remainder polynomial to zero. This follows from Lemma 6.2.8.

Corollary 5.4.3 applies in this case, of course: the above is a presentation for the B–algebra of Y λµ (R).
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Monomials as highest weights

In this chapter, we aim to describe the set of highest weights for Y λµ (R). The materia of this section

appeared in [KTW+15].

6.1 Highest weights

In §5.1, for a tuple J =
(
Ji(u)

)
i∈I of series Ji(u) ∈ 1 + u−1C[[u−1]] we defined corresponding Verma

modules M(J) and M(J,R). We have seen that the module M(J,R) is non-zero if and only if J

corresponds to a point in MaxSpecB
(
Y λµ (R)

)
. Let us define, then, the set of highest weights

Hλ
µ (R) = MaxSpecB

(
Y λµ (R)

)
Note that if J ∈ Hλ

µ (R), then each Ji is a rational function (expanded at u = ∞) because of the

formula relating Hi(u) and Ai(u) and because A
(s)
i 1 = 0 for s > mi. Thus each Ji can be written as a

product of linear factors and their inverses. That is, there is a collection of multiplicities ai,k ∈ Z for

each k ∈ C such that

Ji(u) = u−µi
∏
k

(u− 1
2k)ai,k .

We will prove later, in Proposition 6.2.12, that if ai,k 6= 0 then we must have k ∈ Z and i ∈ Ik (see

Section 2.2). Assuming this result, we can define y(J) =
∏
i,k y

ai,k
i,k ∈ B to be the Nakajima monomial

obtained by converting any factor u− 1
2b occurring in uµiJi(u) into yi,b.

This leads us to the main conjecture from [KTW+15]:

Conjecture 6.1.1. Let λ, µ ∈ P+ with λ ≥ µ, and R be a set of parameters of weight λ. The map

J 7→ y(J) is a bijection between Hλ
µ (R) and B(λ,R)µ, the set of elements of weight µ in B(λ,R).

We can reformulate the map J 7→ y(J) as follows. Suppose we have a Verma module Mλ
µ (J,R) for

Y λµ (R). Let us consider the action of A
(r)
i on 1. Since A

(r)
i = 0 for r > mi, we can write

Ai(u)1 =
∏
s∈Si

(1− 1
2su
−1)1

60
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for some multiset Si. Thus we get a collection of multisets S = (Si)i∈I which determine J by

Ji(u) = u−µi
∏
c∈Ri

(u− 1
2c)

∏
j∼i
∏
s∈Sj (u−

1
2s−

1
2 )∏

s∈Si(u−
1
2s)(u−

1
2s− 1)

From this, it is easy to see that y(J) = yRz
−1
S .

6.2 Description of the product monomial crystal

In this section we give a combinatorial characterization of the product monomial crystal, using funda-

mental monomial crystals.

6.2.1 Monomial data and regularity

Recall the monomial crystal B from Section 2.2.1. Throughout this section, fix an integral collection of

parameters R.

Definition 6.2.1. A R–monomial datum is an element p ∈ B of the form p = yRz
−1
S , where S =

(Si)i∈I is an integral collections of multisets (in the sense of Section 2.2.1).

We will now describe the product monomial crystal combinatorially, using conditions indexed by

elements of fundamental monomial crystals B($i, n), where i and n have opposite parity.

We fix some notation: we reserve the letter p to denote monomial data

p = yRz
−1
S =

∏
i,k

y
ai,k
i,k ∈ B,

while we will reserve the letter q to denote an element of a fundamental crystal with opposite parity

condition

q = yi,nz
−1
U =

∏
j,k

y
bj,k
j,k ∈ B($i, n)

For a multiset S, let S(k) denote the multiplicity of the element k in S.

Definition 6.2.2. For p, q as above we set

Eq(p) :=
∑
j,k

Uj(k)Rj(k + 1) +
∑
j,k

bj,kSj(k − 1)

Definition 6.2.3. We call a R–monomial data p regular if Eq(p) ≥ 0 for all q ∈ B($i, n), where

i ∈ In+1.

6.2.2 Product monomial crystal

In this section we will prove the following theorem, which gives our promised combinatorial characteri-

zation of the product monomial crystal.

Theorem 6.2.4. Consider a R–monomial datum p = yRz
−1
S . Then p is regular if and only if it is an

element of the product monomial crystal B(λ,R), where λ =
∑
i |Ri|$∨i .
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We begin with several lemmas.

Lemma 6.2.5. Consider p, q as in the previous section. Then

1. Eq(z
±
i,kp) = Eq(p)∓ bi,k+1,

2. Ez±i,kq
(p) = Eq(p)∓ ai,k+1.

whenever the above are well-defined.

For the proofs of the next two Lemmas, we use the connection of monomial crystals to quiver varieties;

see §7.3.3. We do not know purely combinatorial proofs.

Lemma 6.2.6. Multiplication by zi,k gives a bijection of sets(
Regular R–monomial data p

with ai,k < 0 and ai,k+2 ≥ 0

)
∼−→

(
Regular R–monomial data p′

with a′i,k ≤ 0 and a′i,k+2 > 0

)

In particular, the set of regular R–monomial data is invariant under the Kashiwara operators ẽi, f̃i.

Proof. Considering only the conditions on ai,k and ai,k+2, this is straightforward. We must show that

the property of being regular R–monomial data is preserved in both directions.

Suppose that p = yRz
−1
S has ai,k < 0 and ai,k+2 ≥ 0. By Lemma 6.2.5,

Eq(zi,kp) = Eq(p)− bi,k+1.

If bi,k+1 ≤ 0 this is non-negative because p is regular. If bi,k+1 > 0 then Lemma 7.3.5 applies, so

q′ = z
−bi,k+1

i,k−1 q ∈ B($j , n). Then

0 ≤ Eq′(p) = Eq(p) + bi,k+1ai,k ≤ Eq(zi,kp), (6.1)

where the last inequality is because ai,k ≤ −1, bi,k+1 ≥ 1. In particular, taking q = yi,k−1 we get

0 ≤ Eq(zi,kp) = Si(k) − 1, i.e. that Si(k) ≥ 1. This shows that p′ = zi,kp is indeed R–monomial data.

Equation (6.1) proves regularity.

The proof for the other direction is similar.

Lemma 6.2.7. Consider R–monomial data p. If ai,k ≥ 0 for all pairs (i, k), then

1. p is regular,

2. p ∈ B(λ,R), where λ =
∑
i |Ri|$∨i .

Proof. For (1), consider first a highest weight element q = yj,n ∈ B($j , n). Then Eq(p) = Si(n+1) ≥ 0.

Every other element of q′ ∈ B($j , n) can be reached from q by multiplying by a sequence of z−1
i,k , and

by Lemma 6.2.5 multiplying by z−1
i,k corresponds to adding ai,k+1 to Eq(p). Since all ai,k+1 ≥ 0, we get

Eq′(p) ≥ 0 for all q′.

For (2), we define a sequence of elements p(k) ∈ B(λ,R) for kmin ≤ k ≤ kmax. Here kmax denotes

the maximal value of k for which some Ri(k) > 0, while kmin denotes the minimal value of k for which

some Si(k) > 0. By the construction we will have p(kmin) = p, proving the claim.
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Define p(kmax) =
∏
i,k y

Ri(k)
i,k , so p(kmax) ∈ B(λ,R) is the element of highest weight. We define the

rest of the sequence iteratively. Assuming p(k + 1) ∈ B(λ,R) has been defined, put

p(k) =
(∏

i

z
−Si(k)
i,k

)
p(k + 1)

We claim that p(k) ∈ B(λ,R). From the iterative definition, the exponent of yi,k+2 in p(k + 1) is

Ri(k + 2)− Si(k + 2) +
∑
j∼i

Sj(k + 1) = ai,k+2 + Si(k)

By assumption ai,k+2 ≥ 0, so z
−Si(k)
i,k p(k+ 1) ∈ B(λ,R) by Lemma 7.3.5. Multiplication by z

−Si(k)
i,k does

not change the exponent of yj,k+2 for j 6= i, so by applying the same argument for all j it follows that

p(k) ∈ B(λ,R).

The assumption that all ai,k ≥ 0 forces Si(k) = 0 for k ≥ kmax. With this in mind it is clear that

p(kmin) = p, proving that p ∈ B(λ,R).

Proof of Theorem 6.2.4. Consider an equivalence relation on the set of regular R–monomial data, defined

by extending the relation from Lemma 6.2.6: define p and p′ to be equivalent if p′ can be obtained from

p by a series of multiplications by some zi,k (or z−1
i,k ), where at each step we had ai,k < 0 and ai,k+2 ≥ 0

(resp. ai,k ≤ 0 and ai,k+2 > 0). From Corollary 7.3.6, it follows that if some representative of an

equivalence class is in B(λ,R), then all representatives are also in B(λ,R).

Similarly, define an equivalence relation on B(λ,R) by extending the relation from Corollary 7.3.6:

p and p′ are again defined to be equivalent if p′ can be obtained from p by a series of multiplications

by z±1
i,k as above. By Lemma 6.2.6, if some representative of an equivalence class is regular, then all

representatives are regular.

In both cases, we claim that every equivalence class contains a representative p+ satisfying a+
i,k ≥ 0

for all i, k. Indeed, starting from p a regular R–monomial data (resp. p ∈ B(λ,R)), choose ai,k < 0 with

k maximal (assuming some ai,k < 0). Then ai,k+2 ≥ 0, so zi,kp is also regular R–monomial data by

Lemma 6.2.6 (resp. zi,kp ∈ B(λ,R) by Corollary 7.3.6). Iterating this argument, we produce an element

p+ in the same equivalence class as claimed.

By Lemma 6.2.7, such an element p+ is both regular and lies in B(λ,R). We conclude that all regular

R–monomial data is in B(λ,R), and vice versa.

6.2.3 Monomial data and highest weights

Fix λ, µ,R. Our goal now is to relate the product monomial crystal B(λ,R)µ to the set of highest

weights Hλ
µ (R).

The bridge between the two is the algebra B̃λµ(R) from Section §5.4.1. To relate MaxSpec B̃λµ(R)

with B(λ,R)µ, we will make use of the following simple property of principal parts of rational functions:

Lemma 6.2.8. Suppose that X(u) ∈ C((u−1)) is the expansion at u = ∞ of a rational function

f(u)/g(u), where f, g ∈ C[u]. Then

X(u) = 0 ⇐⇒ g divides f
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As explained in Remark 5.4.2, we may think of B̃λµ(R) as a quotient of

C[A
(s)
i : i ∈ I, 1 ≤ s ≤ mi]

Therefore a point in MaxSpec B̃λµ(R) is equivalent to a tuple of multisets S = (Si)i∈I of complex numbers,

with |Si| = mi: such a tuple corresponds to the homomorphism C[H
(•)
• ]→ C given in series form by

Ai(u) 7→
∏
s∈Si

(1− 1
2su
−1)

Lemma 6.2.9. Let q ∈ B($i, 0), and write

q = yi,0z
−1
U =

∏
j,k

y
bj,k
j,k

Consider S = (Si)i∈I and the corresponding map C[H
(•)
• ] → C, as above. Then the image of Hq(u)

under this map is zero if and only if there is an inclusion of multisets of C:

⋃
j,k

bj,k<0

(Sj − k)−bj,k ⊂

(⋃
j,k

(Rj − k)Uj(k−2)

)
∪

( ⋃
j,k

bj,k>0

(Sj − k)bj,k

)
(6.2)

Here, for a multiset X and integer n, Xn denotes the multiset union ∪n`=1X. By convention, X0 = ∅.

Proof. By the definition of Hq(u), its image under the map corresponding to S is the rational function(∏
j,k

∏
c∈Rj

(u− 1
2c+ 1

2k)Uj(k−2)
)(∏

j,k

∏
s∈Sj

(u− 1
2s+ 1

2k)bj,k
)

By Lemma 6.2.8, the principal part of this rational function is zero if and only if its denominator divides

its numerator. Since the multisets in (6.2) encode the roots of these polynomials, the principal part is

zero if and only if (6.2) holds.

Since MaxSpec B̃λµ(R) is exactly the set of S for which all Hq(u) map to zero, this lemma is the key

tool in the following result:

Theorem 6.2.10. There is a bijection of sets

MaxSpec B̃λµ(R) −→ B(λ,R)µ

defined by S 7→ yRz
−1
S .

Proof. Firstly, we will show that the image p := yRz
−1
S necessarily lands in B, i.e. that all variables yi,k

which appear have k ∈ Z and satisfy the parity condition i ∈ Ik as per Section 2.2 Consider the element

f̃i(yi,0) = yi,0z
−1
i,−2 = y−1

i,−2

∏
j∼i

yj,−1 ∈ B($i, 0)

The principal part of the corresponding series Hf̃i(yi,0)(u) must map to zero under S. By Lemma 6.2.9,
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this is equivalent to the inclusion

Si + 2 ⊂ Ri ∪
⋃
j∼i

(Sj + 1)

It is not hard to see that these containments for all i ∈ I, together with the integrality and parity

conditions on R, imply the desired integrality and parity conditions on S.

Next, we will show that the image p is a regular element of B. For each n ∈ Z, there is an isomorphism

of crystals B($i, 0)
∼→ B($i, n) which acts by translation on the variables: yj,k 7→ yj,k+n. For q ∈

B($i, 0), denote its image by qn ∈ B($i, n).

For any fixed q, we claim that the corresponding inclusion of multisets (6.2) is equivalent to the

inequalities Eqn(p) ≥ 0 for all n of opposite parity to i. Indeed, the integers Eqn(p) encode the difference

in multiplicity of the number n − 1 between the multisets appearing on the right-hand and left-hand

sides of (6.2). Because R and S satisfy the parity conditions, there is an inclusion of multisets (6.2) if

and only if these multiplicities are non-negative. By considering all q ∈ B($i, 0), it follows that p is

regular.

Finally, since p = yRz
−1
S is regular, by Theorem 6.2.4 we know that p ∈ B(λ,R). Since |Si| = mi for

all i, it follows that p ∈ B(λ,R)µ as claimed.

This completes the proof of Conjecture 6.1.1 in type A.

Corollary 6.2.11. For g of type A and µ ∈ P+, the map J 7→ y(J) gives a bijection Hλ
µ (R) ∼= B(λ,R)µ.

For general g, we expect that there exist series Tγ,γ(u) ∈ Y [[u−1]] such that the coefficients of

Gγ(u)Tγ,γ(u) are in Lλµ, such that in C[H
(•)
• ] we have

Π(Gγ(u)Tγ,γ(u)) = Hγ(u),

and such that the coefficients of Hγ(u) generate B(Y λµ (R)). Exhibiting such elements would prove

Conjecture 6.1.1 in general.

By a calculation similar those at the beginning of the proof of Proposition 5.3.3 one can show that

the series

Π(uµi+miTfiv$i ,fiv$i (u)) = Hf̃i(yi,0)(u)

are always in the ideal defining the B-algebra B(Y λµ (R)). The next result follows from the argument at

the beginning of the proof of the previous theorem.

Proposition 6.2.12. For general g, consider a highest weight J ∈ Hλ
µ (R), and encode the action of

Ai(u) in a tuple of multisets S = (Si)i∈I . Then these satisfy the inclusions of multisets

Si + 2 ⊂ Ri ∪
⋃
j∼i

(Sj + 1)

In particular, the map J 7→ y(J) = yRz
−1
S lands in B.

6.2.4 Coproducts and product monomial crystals

In §5.4.2 we defined a coproduct

∆̃λ′,λ′′

µ′,µ′′ : B̃λµ(R) −→ B̃λ
′

µ′ ⊗C[~] B̃
λ′′

µ′′ ,
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which induces a map upon specialization:

∆̃λ′,λ′′

µ′,µ′′ : B̃λµ(R) −→ B̃λ
′

µ′ (R
′)⊗ B̃λ

′′

µ′′ (R
′′)

Proposition 6.2.13. On the level of maximal ideals, the (specialized) coproduct corresponds to the

product map

B(λ′,R′)µ′ × B(λ′′,R′′)µ′′ −→ B(λ,R)µ

under the bijection from Theorem 6.2.10.

Remark 6.2.14. The fact that our coproduct maps corresponds to union of multisets can be understood

in terms of the ring Λ of symmetric functions. Working over C for simplicity, recall that this is the

polynomial ring

Λ = C[e1, e2, e3 . . .]

where ek is the kth elementary symmetric function (in countably many variables). There is a coproduct

Λ −→ Λ⊗ Λ defined by ek 7→
∑
i+j=k ei ⊗ ej, see e.g. Macdonald’s book [Mac79].

For each m, we can consider the space Symm A1 of divisors on A1 of degree m as a closed subscheme

of Spec Λ, via the map

Λ −� C[e1, . . . , em] ∼= C[x1, . . . , xm]Sm ,

taking the ek to the elementary symmetric functions of the xi. The coproduct on Λ induces a domimant

morphism

SymnA1 × Symn A1 −→ Symn+m A1

which corresponds to taking the sum of two divisors. Equivalently, thinking of divisors as multisets, this

is the operation of taking their union.

6.3 The case of sl2

As in §2.4, elements of the product monomial crystal B(λ,R) have the form p = yRz
−1
S . Recall also that

the fundamental monomial crystal for sl2 is

B($, 0) : y0
f̃−→ y−1

−2

As explained in the proof of Theorem 6.2.10, the regularity conditions from Definition 6.2.3 are equivalent

to the containments of multisets given in (6.2). In the sl2 case, the conditions (6.2) corresponding to y0

and y−1
−2 = y0z

−1
−2 are

∅ ⊂ S, S + 1 ⊂ R
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Quiver varieties

7.1 Nakajima quiver varieties

In this section, we will overview the definition of Nakajima quiver varieties. These varieties have been

very thoroughly studied, and there are many excellent sources to which we refer the reader for more

details, e.g. Nakajima’s papers [Nak98], [Nak01a], or Ginzburg’s lectures [Gin09] for an overview.

7.1.1 Representations of doubled framed quivers

Fix an orientation of the Dynkin diagram I of g, that is, a choice of orientation of each edge. Consider

the associated quiver Q, which has vertex set I and arrow set Ω corresponding to this orientation. For

a ∈ Ω, denote the source of a by s(a), and the target of a by t(a). If s(a) = i and t(a) = j, then we will

sometimes write i→ j instead of a.

For each arrow a ∈ Ω, we will denote by a the opposite arrow which goes from t(a) to s(a). Denote

by Ω the set consisting of these opposite arrows.

Fix two I-graded vector spaces V =
⊕

i∈I Vi and W =
⊕

i∈IWi. Consider the vector space

M(V,W ) =
⊕

a∈Ω∪Ω

Hom(Vs(a), Vt(a))⊕
⊕
i∈I

Hom(Wi, Vi)⊕
⊕
i∈I

Hom(Vi,Wi),

We will denote an element of M(V,W ) as a tuple

(
(Ba)a∈Ω∪Ω, (ηi)i∈I , (εi)i∈I

)
or simply (Ba, ηi, εi).

Remark 7.1.1. The space M(V,W ) is the set of representations of the doubled framed quiver associated

to Q, on fixed vector spaces V,W . Here framed means that we have added an additional vertex i′ for

each i ∈ I, with an arrow i→ i′:

1′ 2′ 3′ 4′ 5′

1 2 3 4 5

67
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This produces a framed quiver Qframed. Meanwhile, doubled means we have added an opposite arrow

for every arrow in Qframed. For those arrows a ∈ Ω, this is just a ∈ Ω as above, while for the remaining

arrows i→ i′ we add new arrows i′ → i.

We will want to relate M(V,W ), and its associated Nakajima quiver variety, with the Lie algebra g

corresponding to I. As a start, we relate the graded dimensions of the spaces V,W to elements of the

root and weight lattices of g in the following (asymmetric) way:

dim(V ) := (dimVi)i∈I 7−→
∑
i∈I

dim(Vi)αi ∈ Q, (7.1)

dim(W ) := (dimWi)i∈I 7−→
∑
i∈I

dim(Wi)$i ∈ P

By abuse of notation, we will simply identify these elements. More generally, for a subspace S ⊂ V , we

will identify

dim(S) =
∑
i∈I

dim(Si)αi ∈ Q

7.1.2 Symplectic structure

There is an important interpretation of M(V,W ) as the cotangent bundle to a vector space. Recall that

for any C–vector spaces U1, U2, there is a non-degenerate trace pairing

Hom(U1, U2)×Hom(U2, U1) −→ C, (A,B) 7→ tr(AB)

Now consider the set of representations of the framed quiver Qframed on the vector spaces V and W .

This is given by elements of

N(V,W ) =
⊕
a∈Ω

Hom(Vs(a), Vt(a))⊕
⊕
i∈I

Hom(Vi,Wi)

The trace pairings allow us to identify

M(V,W ) ∼= N(V,W )⊕N(V,W )∗ ∼= T ∗N(V,W )

and as a consequence, M(V,W ) has a natural symplectic form. See e.g. [Nak98, §3.2.].

7.1.3 Group actions

There is a natural action of the group GV :=
∏
i∈I GL(Vi) on M(V,W ), where an element g = (gi)i∈I ∈

GV acts by

g ·
(
(Ba), (ηi), (εi)

)
=
(
(gt(a)Bag

−1
s(a)), (giηi), (εig

−1
i )
)

(7.2)

This action is Hamiltonian, with moment map [Nak98, Equation (3.4)]

µ : M(V,W ) −→ g∗V
∼= gV , (7.3)

(Ba, ηi, εi) 7−→
⊕
i∈I

( ∑
a∈Ω,
t(a)=i

BaBa −
∑
a∈Ω,
s(a)=i

BaBa + ηiεi

)
(7.4)
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where we have identified gV =
⊕

i∈I gl(Vi) with g∗V via the trace pairing.

Remark 7.1.2. In what follows we will focus on the level-set µ−1(0), although it is possible to work more

generally [Gin09]. The equation µ = 0 is known as the ADHM equation, and points (Ba, ηi, εi) ∈ µ−1(0)

are also known as ADHM data, in reference to their connection with gauge theory [Nak98, Section 3].

Similarly, the group GW :=
∏
i∈I GL(Wi) acts on M(V,W ), where an element g = (gi)i∈I ∈ GW

acts by

g ·
(
Ba, ηi, εi

)
=
(
Ba, ηig

−1
i , giεi

)
This action extension extends to an action of G̃W = GW × C×, by

(g, t) ·
(
Ba, ηi, εi

)
=
(
tBa, ηig

−1
i , t2giεi

)
(7.5)

The actions of G̃W and GV commute, and the action of G̃W preserves µ−1(0).

Remark 7.1.3. There are many other reasonable choices of C×–action on M(V,W ). For example,

there is an action

(g, t) · (Ba, ηi, εi) = (tBa, t
kiηig

−1
i , t`igiεi)

where ki, `i are integers satisfying ki + `i = 2 (the latter is required to preserve the zero-level of the

moment map). However this action is related to the action (7.5) by an automorphism of G̃W :

(
(gi)i∈I , t

)
7−→

(
(t−kigi)i∈I , t

)
Actions which depend on the orientation Ω have also been studied [Nak01b, §8].

7.1.4 Notation

We will follow a non-standard notation for quiver varieties, which we explain here. Given λ, µ as per

usual with λ− µ =
∑
imiαi, we take

Wi = Cλi , Vi = Cmi

In other words, we are choosing vector spaces such that

dim(V ) = λ− µ =
∑
i∈I

miαi,

dim(W ) = λ =
∑
i∈I

λi$i,

following the convention of equation (7.1).

Throughout the remainder of this thesis, we will write M(λ, µ) instead of M(V,W ). However, we

will continue to use the notations V,W,GV and GW as above.
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7.1.5 Hamiltonian reduction and GIT

We proceed towards a key definition of this chapter: Nakajima quiver varieties. To begin, consider the

categorical quotient

M0(λ, µ) := µ−1(0) // Gm = SpecC[µ−1(0)]Gm

This is an affine algebraic variety, and moreover it inherits a Poisson structure as it is a Hamiltonian

reduction. However, it is generally singular.

Another quotient can defined using geometric invariant theory (GIT). Consider a character θ of the

group GV . Since GV =
∏
i∈I GL(Vi), any character θ must have the form

(gi)i∈I 7−→
∏
i∈I

det(gi)
−θi

for some θi ∈ Z. It is useful to identify θ with a weight of g, according to

θ 7−→
∑
i∈I

θi$i ∈ P (7.6)

In particular, the important choices θ = ±ρ = ±
∑
i$i correspond to the characters

(gi)i∈I 7−→
∏
i∈I

det(gi)
∓1

Remark 7.1.4. In Section 7.2 we will make use of this identification of θ as a weight, and in particular

will be interested in the corresponding action of the Weyl group W for g on the set of characters (where

W acts on weights in the usual way).

Definition 7.1.5. A point (Ba, ηi, εi) ∈ µ−1(0) is called θ–semistable if the following condition holds:

for any subspace S =
⊕

i∈I Si ⊂ V which is stable under the maps Ba, we have

Si ⊂ Ker εi, ∀ i ∈ I =⇒ 〈θ,dimS〉 ≤ 0, (7.7)

Si ⊃ Im ηi, ∀ i ∈ I =⇒ 〈θ,dimS〉 ≤ 〈θ,dimV 〉 (7.8)

We will denote the set of θ–semistable points of µ−1(0)θ−ss.

In the above definition, recall that we are regarding θ ∈ P and dimS ∈ Q. The pairing is the usual

one between the weight lattice and root lattice, so for example

〈θ,dimS〉 = 〈
∑
i∈I

θi$i,
∑
j∈I

dim(Sj)αj〉 =
∑
i∈I

θi dim(Si)

Remark 7.1.6. (a) If θ is dominant regular (i.e. θi > 0 for all i), then the above conditions are

equivalent to

Si ⊂ Ker εi, ∀i ∈ I =⇒ S = {0}

(b) Similarly if θ is anti-dominant regular (i.e. θi < 0 for all i), then the above conditions are equivalent

to

Si ⊃ Im ηi, ∀i ∈ I =⇒ S = {0}
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The action (7.2) of GV preserves the set of θ–semistable points. With this in mind, we now come to

the main definition of this section.

Definition 7.1.7. The Nakajima quiver variety associated to the data λ, µ and θ is defined to be

Mθ(λ, µ) := µ−1(0)θ−ss/GV

The definition of semistability given above is due to King [Kin94], and is a reformulation for quiver

varieties of the more general notion of stability in GIT theory [Gin09, Proposition 5.1.5.]. In particular,

Mθ(λ, µ) can also be expressed as Proj of the ring of θ–semi-invariants.

The closed points of Mθ(λ, µ) are equivalence classes of quiver data, which we’ll denote [Ba, ηi, εi].

Lemma 7.1.8. The action of G̃W on M(λ, µ) descends to an action on Mθ(λ, µ). Explicitly, for

(g, t) ∈ G̃W and [Ba, ηi, εi] ∈Mθ(λ, µ), we have

(g, t) · [Ba, ηi, εi] = [tBa, ηig
−1
i , t2giεi]

We now discuss the matter of smoothness of the varietyMθ(λ, µ). Let us fix some notation. Consider

the set of positive roots which lie below the difference λ− µ =
∑
imiαi:

RV+ = {α =
∑
i

niαi ∈ ∆+ : ni ≤ mi, ∀i ∈ I}

and the set of V -regular weights:

PV = {θ ∈ P : 〈θ, α〉 6= 0, ∀α ∈ RV+}

In particular, any regular weight is V -regular (recall that θ is regular if 〈θ, α〉 6= 0 for all α ∈ ∆+).

Theorem 7.1.9 (Theorem 2.8 in [Nak98], see also Theorem 5.2.2 in [Gin09]).

For θ ∈ PV , the action of GV on µ−1(0)θ−ss is free, and the quotientMθ(λ, µ) is a smooth irreducible

algebraic variety of (complex) dimension

dimMθ(λ, µ) = 〈λ, λ〉 − 〈µ, µ〉

Moreover, the symplectic structure on M(λ, µ) induces an algebraic symplectic form on Mθ(λ, µ).

7.1.6 Tautological bundles

Recall that for a principal (right) G-bundle P −→ X, and a representation E of G, there is an associated

vector bundle E on X:
P ×G E

X

π

Explicitly, E consists of equivalence classes of pairs [p, v] where p ∈ P and v ∈ L, with the equivalence

relation

[pg, v] = [p, gv], ∀g ∈ G
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and the map π takes [p, v] to [p] ∈ X ∼= P/G.

Assume that θ ∈ PV . Then µ−1(0)θ−ss −→ Mθ(λ, µ) is a principal (left) GV –bundle, and we can

apply the above construction to produce vector bundles onMθ(λ, µ). There is a natural representation of

GV on each graded component Vi ⊂ V . We will also consider each component Wi to be a representation

of GV , with trivial action.

Definition 7.1.10. The vector bundles Vi,Wi on Mθ(λ, µ) associated to the representations Vi and Wi

are called tautological bundles.

There is an important complex formed from the tautological bundles [Nak98, Section 4]:

0 −→ Vi
φi−→Wi ⊕

⊕
j∼i
Vj

τi−→ Vi −→ 0 (7.9)

In the fibre over [Ba, ηi, εi], these morphisms are induced by the maps of vector spaces

φi = εi ⊕
⊕

a∈Ω∪Ω,
s(a)=i

Ba, τi = ηi +
∑
a∈Ω,
t(a)=i

Ba −
∑
a∈Ω,
s(a)=i

Ba (7.10)

The fact that this is a complex follows from the vanishing of the moment map, by looking at the maps

(7.10) in each fibre. The next Lemma is a straightforward generalization of [Nak01a, Lemma 2.9.2], and

follows from Remark 7.1.6 by again looking at each fibre.

Lemma 7.1.11. (a) If θ is dominant regular, then φi is injective.

(b) If θ is antidominant regular, then τi is surjective.

The tautological bundles have G̃W –equivariant structures, where (g, t) ∈ GW × C× acts by

(g, t) ·
[
(Ba, ηi, εi), v

]
=
[
(tBa, ηig

−1
i , t2giεi), v

]
, for v ∈ Vi,

(g, t) ·
[
(Ba, ηi, εi), w

]
=
[
(tBa, ηig

−1
i , t2giεi), giw

]
, for w ∈Wi

The exact sequence (7.9) can be made G̃W –equivariant, at the cost of tensoring certain factors by the

trivial line bundle q having C×–weight 1:

0 −→ Vi
φi−→ q2Wi ⊕

⊕
j−i

qVj
τi−→ q2Vi −→ 0 (7.11)

7.1.7 Tensor product quiver varieties

Fix a decomposition λ = λ′ + λ′′, where λ, λ′, λ′′ ∈ P+. Then we can identify

W = W ′ ⊕W ′′

Define a coweight η : C× → GW by η(t) = idW ′ ⊕t idW ′′ . This induces a C×–action on Mθ(λ, µ).

Lemma 7.1.12 ([Nak01b, Lemma 3.2]). Suppose that θ ∈ P+ is dominant. Then there is an isomor-

phism ⊔
µ′+µ′′=µ

Mθ(λ
′, µ′)×Mθ(λ

′′, µ′′)
∼−→Mθ(λ, µ)C

×
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Let us denote the inclusion

ιλ
′,λ′′

µ′,µ′′ :Mθ(λ
′, µ′)×Mθ(λ

′′, µ′′) ↪−→Mθ(λ, µ)C
×
↪−→Mθ(λ, µ)

Explicitly, for point
(
[B′a, η

′
i, ε
′
i], [B

′′
a , η
′′
i , ε
′′
i ]
)
∈Mθ(λ

′, µ′)×Mθ(λ
′′, µ′′). Then its image under ιλ

′,λ′′

µ′,µ′′ is

defined by the sum:

[B′a ⊕B′′a , η′i ⊕ η′′i , ε′i ⊕ ε′′i ] ∈Mθ(λ, µ)C
×

Consider also embedding GW ′ × GW ′′ × C× ↪−→ GW × C× by (g′, g′′, t) 7→ (g′ ⊕ g′′, t). Let GW ′ ×
GW ′′ × C× act on Mθ(λ, µ) via this inclusion.

Lemma 7.1.13.

(a) The inclusion ιλ
′,λ′′

µ′,µ′′ is GW ′ ×GW ′′ × C×–equivariant.

(b) There are GW ′ ×GW ′′ × C×–equivariant isomorphisms

ι∗(Vi) ∼= V ′i � V ′′i , ι∗(Wi) ∼=W ′i �W ′′i ,

where ι = ιλ
′,λ′′

µ′,µ′′ .

7.2 Weyl group action

In this section we will consider certain isomorphisms between Nakajima quiver varieties, corresponding

to the generators si of the Weyl group W :

Si :Mθ(λ, µ)
∼−→Msiθ(λ, siµ)

There are several approaches to such isomorphisms that have been studied in the literature. For example,

Nakajima used analytic techniques [Nak94]. The approach we follow here is that of Maffei [Maf02], who

used the reflection functors of Lusztig [Lus00].

Essentially, the idea is that Si will replace the complex

0 −→ Vi
φi−→Wi ⊕

⊕
j−i

Vj
τi−→ Vi −→ 0

with the complex

0 −→ Coker(φi)
φiτi−→Wi ⊕

⊕
j−i

Vj −� Coker(φi) −→ 0

In doing so, we will replace the ADHM data (Ba, ηi, εi) by using the components of the maps in the

latter complex - this only changes the ADHM near vertex i ∈ I.

Remark 7.2.1. In fact, the isomorphisms Si in the form below appeared in a preprint version of Maffei’s

paper [Maf02] (available at arXiv:math/0003159). In the published version, framing vertices are not

considered in the same manner.

http://arxiv.org/abs/math/0003159
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7.2.1 Reflection varieties

Consider a dominant weight λ, and a weight µ such that λ − µ =
∑
imiαi ≥ 0. As in Section 7.1.4,

we consider graded vector spaces V,W with Vi = Cmi and Wi = Cλi , and the associated varieties

M(λ, µ) = M(W,V ), etc.

Consider also the weight µ′ = siµ, and assume that λ−µ′ =
∑
im
′
iαi ≥ 0. Explicitly, the differences

m =
∑
imiαi and m′ =

∑
im
′
iαi, are related by the “dot action”

m′ = si ∗λ m := si(m− λ) + λ (7.12)

Explicitly, we have m′i = λi − mi +
∑
j−imj . Define the graded vector space V ′ =

⊕
i∈I V

′
i with

V ′i = Cm′i , and the associated varieties M(λ, siµ) = M(W,V ′), etc.

The following definition, due originally to Lusztig [Lus00], is key to defining the Weyl group action:

Definition 7.2.2. Define the reflection variety

Zi(λ, µ) ⊂ µ−1(0)× µ−1(0) ⊂M(λ, µ)×M(λ, siµ)

to be the subvariety consisting of pairs
(
(Ba, ηi, εi), (B

′
a, η
′
i, ε
′
i)
)

such that

(a) Ba = B′a for all a ∈ Ω ∪ Ω such that s(a), t(a) 6= i,

(b) ηj = η′j for all j 6= i,

(c) εj = ε′j for all j 6= i,

(d) we have φiτi = φ′iτ
′
i .

(e) the following sequence is exact:

0 −→ Vi
φi−→Wi ⊕

⊕
j∼i

Vj
τ ′i−→ V ′i −→ 0,

Remark 7.2.3. The above terminology for Zi(λ, µ) is not standard, but seems reasonable given the

extisting terminology of reflection functors.

Maffei proved that the variety Zi(λ, µ) is well-behaved with respect to stability conditions:

Lemma 7.2.4 ([Maf02]). Let
(
(Ba, ηi, εi), (B

′
a, η
′
i, ε
′
i)
)
∈ Zi(λ, µ), and suppose that θ ∈ P satisfies

θi ≥ 0. Then

(Ba, ηi, εi) is θ–semistable ⇐⇒ (B′a, η
′
i, ε
′
i) is siθ–semistable

We define Zθ−ssi (λ, µ) to be the subset of pairs satisfying the conditions of the lemma. Consider the

group

Gi,V = GL(Vi)×GL(V ′i )×
∏
j 6=i

GL(Vj)

This group acts in a natural way on the space Zi(λ, µ), preserving the set Zθ−ssi (λ, µ).
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Note that there are projections

Zi(λ, µ)

µ−1(0) ⊂M(λ, µ) µ−1(0) ⊂M(λ, siµ)

p1 p2
(7.13)

With these preparations, we can state the main theorem of this section:

Theorem 7.2.5 ([Maf02]). Suppose that θi > 0. Then the above projections induce isomorphisms of

algebraic varieties

Zθ−ssi (λ, µ)/Gi,V

µ−1(0)θ−ss/GV µ−1(0)siθ−ss/GV ′

∼
p1

∼
p2

The projections above allow us to define isomorphisms between Nakajima quiver varieties.

Definition 7.2.6. Let λ, µ, θ and i ∈ I be as above. Then we define an isomorphism of algebraic

varieties

Si(λ, µ, θ) :Mθ(λ, µ)
∼−→Msiθ(λ, siµ)

in the following way:

(1) if θi > 0, then we set Si(λ, µ, θ) = p2 ◦ p−1
1 , with notation as in (7.2.5),

(2) if θi < 0, then the component (siθ)i = 〈siθ, αi〉 > 0 and as in (1) there is an isomorphism

Si(λ, siµ, siθ) :Msiθ(λ, siµ)
∼−→Mθ(λ, µ)

We set Si(λ, µ, θ) = Si(λ, siµ, siθ)−1.

When λ, µ, θ are clear, we will simply write Si = Si(λ, µ, θ).

7.2.2 Coxeter relations

Recall that the Weyl group W is generated by the simple reflections si with i ∈ I, satisfying that s2
i = 1

as well as the braid relations

sisj = sjsi if aij = 0, sisjsi = sjsisj if aij = −1

Maffei showed that maps Si define an action of the Weyl group. In order to make sense of this

statement, we need to restrict θ so that arbitrary compositions of these isomorphisms are well-defined.

To this end, we will make the restriction that θ is regular. Indeed, in this case for any w ∈W and i ∈ I
we have

(wθ)i := 〈wθ, αi〉 = 〈θ, w−1αi〉 6= 0

In this case, the map S2
i of Mθ(λ, µ),

Mθ(λ, µ)
Si(λ,µ,θ)−−−−−−→Msiθ(λ, siµ)

Si(λ,siµ,siθ)−−−−−−−−→Mθ(λ, µ)
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is the identity, by the above definition.

Theorem 7.2.7 ([Maf02]). Assume that θ is regular. Then for i, j ∈ I, then the maps Si,Sj satisfy the

braid relations:

(a) if aij = 0, then the following diagram commutes:

Mθ(λ, µ) Msiθ(λ, siµ)

Msjθ(λ, sjµ) Msisjθ(λ, sjsiµ)

Si

Sj Sj

Si

(b) if aij = −1, then the following diagram commutes:

Mθ(λ, µ) Msiθ(λ, siµ) Msjsiθ(λ, sjsiµ)

Msjθ(λ, sjµ) Msisjθ(λ, sisjµ) Msisjsiθ(λ, sisjsiµ)

Si

Sj

Sj

Si
Si Sj

For an arbitrary element w ∈W , pick a reduced decomposition w = sid · · · si1 . Consider the compo-

sition

Mθ(λ, µ)
Sid−→Msidθ

(λ, sidµ)
Sid−1−→ · · ·

Si1−→Mw−1θ(λ,w
−1µ) (7.14)

Since the maps Si satisfy the braid relations in the sense of the previous theorem, we have:

Corollary 7.2.8 ([Maf02]). Assume that θ is regular. Then for any w ∈ W , the above composition is

independent of the choice of reduced expression.

7.2.3 Equivariance

Recall that there is an action of the group G̃W = GW × C∗ on Mθ(λ, µ), as in (7.5).

Lemma 7.2.9. The isomorphism

Si :Mθ(λ, µ)
∼−→Msiθ(λ, siµ)

is G̃W –equivariant.

Proof. There is a G̃W –action on Zi(λ, µ) defined by

(g, t) ·
(
(Ba, ηi, εi), (B

′
a, η
′
i, ε
′
i)
)

=
(
(tBa, ηig

−1
i , t2giεi), (tB

′
a, η
′
ig
−1
i , t2giε

′
i)
)

This action commutes with that of Gi,V , and the projections p1, p2 from (7.13) are G̃W –equivariant.

7.2.4 Vector bundles for chamber weights

In this section we will consider certain vector bundles onMθ(λ, µ), which are constructed via pullbacks of

the tautological bundles Vi under the isomorphisms Sj . By Lemma 7.2.9, any vector bundles constructed

in this manner will have G̃W –equivariant structure.
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To avoid confusion, we will denote the tautological bundles over Mθ(λ, µ) by Vθ,µi and Wθ,µ
i . We

have not included λ in our notation, since it will be kept fixed. Note that, as trivial bundles, for any

i, j ∈ I we have S∗iW
siθ,siµ
j

∼=Wθ,µ
j .

We begin with the following observation regarding the isomorphism Si :Mθ(λ, µ) −→Msiθ(λ, siµ).

Lemma 7.2.10. Assume that θ is regular.

(a) For any i 6= j, we have S∗i V
siθ,siµ
j

∼= Vθ,µj .

(b) If θi = 〈θ, αi〉 > 0, then there is a G̃W –equivariant exact sequence of vector bundles overMθ(λ, µ):

0 −→ Vθ,µi
φi−→ q2Wθ,µ

i ⊕
⊕
j∼i

qVθ,µj
τ ′i−→ q2S∗i V

siθ,siµ
i −→ 0

where φi, τ
′
i are is Definition 7.2.2.

Let i ∈ I. Then the stabilizer subgroup

WI\{i} =
〈
sj : j 6= i

〉
= StabW ($i)

is a parabolic subgroup. In particular, it is known that any coset in W/WI\{i} has a unique representative

in W of minimal length [Kum02, §1.3.17].

Definition 7.2.11. Let θ be dominant regular, and γ ∈ W$i be a chamber weight. Write γ = w$i

where w ∈W is a minimal representative as above, and choose a reduced expression w = sid · · · si1 . Then

we define a vector bundle on Mθ(λ, µ), called the vector bundle associated to γ, as the pull-back

Vθ,µγ := S∗idS
∗
id−1
· · · S∗i1

(
Vw
−1θ,w−1µ

i

)
Note that this is isomorphic to the pull-back of Vw

−1θ,w−1µ
i under the composition (7.14). By con-

sidering the rank of the bundle Vw
−1θ,w−1µ

i on Mw−1θ(λ,w
−1µ), we see that:

Lemma 7.2.12. The rank of Vθ,µγ is

〈λ− w−1µ,$i〉 = 〈λ− µ,$i〉+ 〈µ,$i − γ〉

Remark 7.2.13. It is not hard to see that for any other w′ ∈W such that γ = w′$i, the vector bundle

formed as above using w′ is isomorphic to Vγ . This follows from part (a) of the above lemma, since

we can write w′ = wsjr · · · sj1 where w is as above and all js 6= i. We have used minimal length coset

representatives in the definition to fix a specific choice of Vγ .

7.2.5 Classes in equivariant K-theory

Our next goal will be to compute the classes of the vector bundles Vγ in G̃W –equivariant K-theory. Since

M(λ, µ) is smooth, the equivariant K-group KG̃W
0

(
M(λ, µ)

)
can be defined as the Grothendieck ring

of the category of G̃W –equivariant vector bundles on M(λ, µ). Elements consist of isomorphism classes

[E ] of G̃W –equivariant vector bundles, modulo the relations

[E ] = [E ′] + [E ′′]
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whenever there is a G̃W –equivariant exact sequence 0 → E ′ → E → E ′′ → 0. For an overview of

equivariant K-theory, we refer the reader to [CG97, §5].

We will make use of the following result about reduced decompositions.

Lemma 7.2.14. Let θ be a regular dominant weight and let w ∈ W . If w = sid · · · si1 is a reduced

decomposition for w, then for all ` = 1, . . . , d we have

〈si`+1
si`+2

· · · sidθ, α`〉 > 0

Proof. Equivalently, we must show that 〈θ, sidsid−1
· · · si`αi`−1

〉 > 0. As in (5.6), the elements sidsid−1
· · · si`αi`−1

enumerate the inversion set ∆w. In particular they are all in ∆+, and since θ is dominant regular the

claim follows.

Let us introduce some notation. Recall the monomial crystal B($i, 0) from §2.3 (c.f. also §5.4). For

any γ ∈W$i, there is a unique element

qγ = yi,0z
−1
U =

∏
j,k

y
bj,k
j,k ∈ B($i, 0)

of weight γ. We define an element in KG̃W
0

(
Mθ(λ, µ)

)
as follows:

κθ,µ(qγ) :=
∑
j,k

Uj(k − 2)qk[Wθ,µ
j ] +

∑
j,k

bj,kq
k[Vθ,µj ] (7.15)

We will write q for the class of the bundle q (recall that this is the trivial line bundle with C×–weight

1).

The following is the main new result of this chapter.

Theorem 7.2.15. For all γ ∈W$i and qγ ∈ B($i, 0) as above, we have [Vθ,µγ ] = κθ,µ(qγ).

Proof. To simplify notation, we will write w = sd · · · s1. For each 0 ≤ ` ≤ d, define the subexpression

w` := sd · · · s`+1 and the weight γ` := s` · · · s1$i. Consider the “partial” composition

Mw−1
` θ(λ,w

−1
` µ)

S`−→Ms`w
−1
` θ(λ, s`w

−1
` µ) · · · S1−→Mw−1θ(λ,w

−1µ)

and define Vw
−1
` θ,w−1

` µ
γ` := S∗` · · · S∗1 (Vw

−1θ,w−1µ
i ). By induction on `, we will prove a slightly stronger

claim: [
Vw
−1
` θ,w−1

` µ
γ`

]
= κw

−1
` θ,w−1

` µ(qγ`)

When ` = 0, the claim follows from the definitions:

[
Vw
−1θ,w−1µ

$i

]
=
[
Vw
−1θ,w−1µ

i

]
= κw

−1θ,w−1µ(yi,0)
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Denote qγ` = yi,0z
−1
U =

∏
j,k y

bj,k
j,k . Then

[
S∗`+1V

w−1
` θ,w−1

` µ
γ`

]
= S∗`+1

∑
j,k

Uj(k − 2)qk
[
Ww−1

` θ,w−1
` µ

j

]
+
∑
j,k

bj,kq
k
[
Vw
−1
` θ,w−1

` µ
j

]
=
∑
j,k

j 6=`+1

Uj(k − 2)qk
[
Ww−1

`+1θ,w
−1
`+1µ

j

]
+
∑
j,k

bj,kq
k
[
Vw
−1
`+1θ,w

−1
`+1µ

j

]

+
∑
k

U`+1(k − 2)qk

[Ww−1
`+1θ,w

−1
`+1µ

`

]
− q−2

[
Vw
−1
`+1θ,w

−1
`+1µ

`+1

]
+ q−1

∑
j∼`+1

[
Vw
−1
`+1θ,w

−1
`+1µ

j

]
For the last line above, we applied part (b) of Lemma 7.2.10, which is valid since 〈w−1

` θ, α`〉 > 0 by the

previous lemma. By Proposition 2.3.3, this agrees with the inductive expression for qγ`+1
.

7.3 C×–actions and the product monomial crystal

Recall that in §2.2, we have a fixed bipartition I = I0 ∪ I1 of the vertex set I. Consider the orientation

of the Dynkin diagram, where we let Ω denote those edges in the quiver which go from I1 to I0 and let

Ω denote those edges which go from I0 to I1.

We now fix once and for all a regular dominant weight θ. Denote the corresponding Nakajima quiver

variety by

M(λ, µ) :=Mθ(λ, µ)

This notation is common in the literature on quiver varieties, and is justified: the variety Mθ(λ, µ) is

the same for all such θ, by part (a) of Remark 7.1.6.

Let M(λ) =
⊔
µ

M(λ, µ) be the disjoint union of these quiver varieties.

7.3.1 Graded quiver varieties

Fix a set of parameters R of weight λ. Recall that the group GW =
∏
iGL(Wi) acts on M(V,W ). Fix

homomorphisms ρi : C× → GL(Wi) so that Ri is the set of weights for the action of C× on Wi. This

gives us an action of C× on M(λ, µ) defined by

t ∗ [Ba, ηi, εi] =
[
tBa, ηiρi(t), t

2ρi(t)
−1εi

]
In other words, we are considering the coweight C× −→ G̃W = GW × C× defined by

t 7−→
(
ρi(t)

−1, t
)

We let

M(λ,R) =M(λ)C
×

and M(λ, µ,R) =M(λ, µ)C
×

be the fixed points for this action. These varieties are called graded quiver varieties.

By [Nak01a, §4.1], each point x = [Ba, ηi, εi] ∈ M(λ, µ,R) determines maps (unique up to conju-

gation) σi : C× → GL(Vi), such that σi(t) · (Ba, ηi, εi) = t ∗ (Ba, ηi, εi). Thus a point x determines a
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collection S = (Si)i∈I of multisets of integers with |Si| = mi, which are the weights of the above C×

action on Vi under σi.

Given such a collection S, we let X(S) denote the corresponding subset of M(λ, µ,R). Put another

way, X(S) is the collection of fixed points under C× where the induced action on the fiber of the

tautological bundle Vi at that point has spectrum Si.

Remark 7.3.1. In Nakajima’s papers, S is denoted ρ and X(S) is denoted Z(ρ) or M(ρ). We have

changed certain signs in the C×-actions to match the conventions from previous sections.

To make this more explicit, denote by Wi(k) and Vi(k) the C×-weight spaces of weight k ∈ Z under

the actions ρi, resp. σi. Then the multisets Ri, Si encode dimensions:

Ri(k) = dimWi(k), Si(k) = dimVi(k).

The identity σi(t) · (B, η, ε) = t ∗ (B, η, ε) is equivalent to

Ba(Vs(a)(k)) ⊂ Vt(a)(k + 1), ηi(Wi(k)) ⊂ Vi(k), ε(Vi(k)) ⊂Wi(k + 2).

Consider the graded components of the maps φi, τi from (7.10):

φi(k) : Vi(k − 2)→Wi(k)⊕
⊕
s(a)=i

Vt(a)(k − 1),

τi(k) : Wi(k)⊕
⊕
s(a)=i

Vt(a)(k − 1)→ Vi(k).

Since θ is dominant regular, it follows by Lemma 7.1.11 that φi(k) is injective. Thus we get a complex

Ci(k)p, p = −1, 0, 1 as follows

Vi(k − 2)
φi(k)−−−→Wi(k)⊕

⊕
s(a)=i

Vt(a)(k − 1)
τi(k)−−−→ Vi(k).

7.3.2 Crystal structure

As in Section 2.3.1, given collections of multisets R,S, we consider

yRz
−1
S =

∏
i∈I,c∈Ri

yi,c
∏

i∈I,k∈Si

z−1
i,k =

∏
i,k

y
ai,k
i,k .

A simple computation shows the following result.

Lemma 7.3.2. On the locus X(S), we have ai,k =
∑
p(−1)p dimCi(k)p.

The next result follows from the work of Nakajima [Nak01a, Theorem 5.5.6]:

Proposition 7.3.3. For each S, if X(S) is non-empty, then it is a connected component ofM(λ, µ,R).

In particular there is an injective map

π0

(
M(λ,R)

)
−→ B, X(S) 7−→ yRz

−1
S
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In [Nak01b], Nakajima studies a different C×–action on M(λ, µ), and constructs a crystal structure

on the fundamental group of its fixed-point set. By comparing Nakajima’s action with the C×–action

defined above, in [KTW+15] we proved:

Theorem 7.3.4 ([KTW+15, Proposition 7.7]). The image of the map π0

(
M(λ,R)

)
−→ B is the product

monomial crystal B(λ,R). There is an isomorphism of crystals

π0

(
M(λ,R)

) ∼−→ B(λ,R)

7.3.3 Some results used earlier

The following two results were used in the proofs of Lemmas 6.2.6 and 6.2.7.

Lemma 7.3.5. Let p = yRz
−1
S ∈ B(λ,R), and write p =

∏
i,k y

ai,k
i,k .

1. If ai,k > 0, then z−1
i,k−2p ∈ B(λ,R).

2. If ai,k < 0, then zi,kp ∈ B(λ,R).

Proof. By Proposition 7.3.3, we can find X(S) ∈ π0(M(W,R)) corresponding to p. Fix [B, η, ε] ∈ X(S).

In each case we will produce a point in the appropriate X(S′), proving that it is non-empty, and hence

corresponds to an element of B(λ,R).

Case (1): Since ai,k > 0, Lemma 7.3.2 gives dim Ker τi(k)/ Imφi(k) > 0. Choose an embedding

C ↪→ Ker τi(k) whose image is not contained in Imφi(k), and extend B and ε to Vi(k − 1) ⊕ C as the

components of this embedding. Reasoning as in Proposition 4.5 in [Nak94], we see that this extended

datum lies in µ−1(0)s. The dimension of Vi(k−1) has increased by one, which corresponds to multiplying

by z−1
i,k−2.

Case (2): Since ai,k < 0, Lemma 7.3.2 implies τi(k) is not surjective. Choose a codimension one

subspace Im τi(k) ⊂ V ′i (k + 1) ⊂ Vi(k + 1), and define (B′, η′, ε′) as the restrictions of (B, η, ε). This

decreases Vi(k + 1) by 1, so corresponds to multiplying by zi,k.

Corollary 7.3.6. Multiplication by zi,k defines a bijection of sets(
p ∈ B(λ,R) with

ai,k < 0 and ai,k+2 ≥ 0

)
∼−→

(
p′ ∈ B(λ,R) with

a′i,k ≤ 0 and a′i,k+2 > 0

)

Finally, we provide a proof of Proposition 2.3.3:

Proof of Proposition 2.3.3. The varietyM(λ,wλ) consists of a single point x. Moreover since siwλ < wλ

we have 〈wλ, αi〉 > 0, so by [Nak98, Proposition 4.5 and Corollary 4.6] we can produce from x a point

x′ ∈M(λ, siwλ). One way is to replace the data near vertex i using the sequence

0 −→ ker τi ↪−→Wi ⊕
⊕
j∼i

qVj
φiτi−� ker τi −→ 0

It is not hard to see that the spectrum of the C×–action changes as claimed.
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7.4 The case of sl2

For the Dynkin diagram of type A1, the Nakajima quiver varieties admit a particularly nice description.

Fix λ, µ integers, with λ ≥ 0 and λ−µ = 2m ≥ 0 even. The data in this case consists of a pair of vector

spaces W = Cλ, V = Cm and maps

W

V

η ε

satisfying the moment map condition ηε = 0 ∈ End(V ). The stability condition is an integer θ, and

depending on the sign of θ we have:

Mθ>0(λ, µ) ∼= T ∗Gr(m,λ), Mθ<0(λ, µ) ∼= T ∗Gr(λ,m)

where Gr(m,λ) denotes the Grassmannian of m–dimensional subspaces of Cλ, and Gr(λ,m) denotes the

space of m–dimensional quotients of Cλ. For example, if θ > 0 then ε is injective by Remark 7.1.6 and

there is a map

Mθ(λ, µ) −� Gr(m,λ), [η, ε] 7−→ Im ε ⊂ Cλ,

This is a vector bundle, whose fibre over Im ε is the space of maps η such that ηε = 0.

The action of GW = GL(λ) corresponds to the usual transitive action on Gr(m,λ), induced to

T ∗Gr(m,λ). The action of t ∈ C× is by t−2 on the cotangent bundle’s fibres.

Recall that we have the trivial vector bundle W overM(λ, µ), as well as vector bundles V$ = V and

Vs$ corresponding to the Weyl orbit W$. These fit into an equivariant exact sequence

0 −→ V −→ q2W −→ q2Vs$ −→ 0

Under the identification with T ∗Gr(m,λ), V is the pull-back of the (usual) tautological bundle over

Gr(m,λ) under the projection T ∗Gr(m,λ)→ Gr(m,λ), while Vs$ is the quotient bundle W/V.



Chapter 8

Equivariant cohomology of quiver

varieties

8.1 Equivariant cohomology

We will temporarily use G to denote a topological group, locally to this section. For a G–space X, the

equivariant cohomology ring is defined as

H∗G(X) := H∗(X ×G EG)

where EG is a universal space for G: a contractible space on which G acts freely. The map EG −→
BG := EG/G is a universal principal G–bundle. Here, we have denoted

X ×G EG = (X × EG)/G,

the quotient under the natural G action. If the action of G on X is free, then H∗G(X) ∼= H∗(X/G). For

an overview of the theory of equivariant cohomology see [GKM98], [Bri98]. We will always work with

coefficients in C.

An interesting aspect of equivariant cohomology is that H∗G(pt) has a non-trivial ring structure, and

the map X → pt induces a natural H∗G(pt)–module on H∗G(X). For a torus T , there is an isomorphism

H∗T (pt) ∼= C[h]

where C[h] denote coordinate ring of functions on h = Lie(T ). It is a graded isomorphism: H∗T (pt)

is graded by cohomological degree, while C[h] is graded by giving linear functions (i.e elements of h∗)

degree 2.

If G is a reductive group and T ⊂ G is a maximal torus with associated Weyl group W , then there

is an action of W on H∗T (pt) and graded isomorphism

H∗G(pt) ∼= H∗T (pt)W

which is also known as the equivariant splitting principle.

83
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8.1.1 Chern classes

For any G–equivariant vector bundle E on X, there are associated equivariant Chern classes

c1(E), . . . , cr(E) ∈ H∗G(X)

where r = rk E , which depend only on the isomorphism class of E . They can be defined as the ordinary

Chern classes of the associated vector bundle

E ×G EG −→ X ×G EG

In particular H∗G(pt) is generated by the Chern classes of the G–equvariant vector bundles V → pt, which

are simply the representations V of G. Chern classes also satisfy a naturality property: if f : Y → X is

a G–equivariant map, then

f∗ck(E) = ck(f∗E)

It will be useful later for us to encode the Chern classes via the Chern series (polynomial)

CE(u) := 1 + c1(E)u−1 + c2(E)u−2 + . . . ∈ 1 + u−1H∗G(X)[[u−1]] (8.1)

These series have the crucial “Whitney sum” property that

CE(u) = CE′(u)CE′(u)

for any G–equivariant exact sequence 0 −→ E ′ −→ E −→ E ′′ −→ 0.

The fact that the Chern class cs(E) is zero for s > rk E will play a key role for us: it will impose

certain relations on the generators of our equivariant cohomology rings (more precisely, they will give

elements of the kernel of the Kirwan map). We will refer to such relations as rank relations. These

can be encoded in series form:

urk ECE(u) = 0 (8.2)

(recall that we denote by X(u) the principal part of a series X(u)).

8.2 Equivariant cohomology for M(λ, µ)

8.2.1 Fixing notations

As in the final section of the previous chapter, we will be fixing a dominant weight θ and simply denoting

M(λ, µ) :=Mθ(λ, µ). We will also denote the vector bundles on M(λ, µ) from §7.2.4 by Vγ := Vθ,µγ .

Recall the groups GV =
∏
i∈I GL(Vi) and GW =

∏
i∈I GL(Wi). We will identify

H∗GV (pt) = C[A
(s)
i : i ∈ I, 1 ≤ s ≤ mi] (8.3)

H∗GW (pt) = C[R
(s)
i : i ∈ I, 1 ≤ s ≤ λi],

H∗C×(pt) = C[~]

via A
(s)
i = cs(Vi), R

(s)
i = cs(Wi) and ~ = 1

2c1(C) where C× y C with weight 1. We introduced a 1
2 here
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(and later) to match our previous conventions for Bλµ .

Putting this all together, we have an isomorphism

H∗GV ×GW×C×(pt)
∼−→ Pλµ

where Pλµ is the algebra defined in (5.8). This isomorphism is graded, up to a factor of 2. Indeed, we

previously let the generators R
(s)
i and A

(s)
i to have degree s, and ~ have degree 1. However, the Chern

classes of the left-hand side naturally have even degrees, for example cs(Wi) has degree 2s.

8.2.2 Some cohomological properties of M(λ, µ)

It is known that Hodd
(
M(λ, µ)

)
= 0, by [Nak01a, Theorem 7.3.5] ([BPW12, Proposition 2.5] also applies,

since M(λ, µ) is a symplectic resolution). In particular, by [GKM98, Theorem 14.1] this implies that

M(λ, µ) is equivariantly formal for GW×C×(or for any connected reductive subgroup H ⊂ GW×C×).

In particular,

H∗GW×C×
(
M(λ, µ)

)
is a free module over H∗GW×C×(pt).

It is also known that for any closed subgroup H, there is a natural isomorphism

H∗GW×C×
(
M(λ, µ)

)
⊗H∗

GW×C×
(pt) H

∗
H(pt) ∼= H∗H

(
M(λ, µ)

)
under the natural map H∗GW×C×(pt)→ H∗H(pt). This is proven in [Nak01a, §7] for equivariant K–theory,

that but the proofs apply to equivariant cohomology as well (see also [SVV14]).

8.2.3 The Kirwan map

Algebraically, we will define the Kirwan map as follows:

Definition 8.2.1. (a) The Kirwan map ψ is defined by

H∗GV (pt) −→ H∗
(
M(λ, µ)

)
A

(s)
i 7−→ cs(Vi)

(b) The equivariant Kirwan map Ψ is defined by

H∗GV ×GW×C×(pt) −→ H∗GW×C×
(
M(λ, µ)

)
A

(s)
i 7−→ cs(Vi), R

(s)
i 7−→ cs(Wi), ~ 7−→ 1

2c1(q)

Let us describe these maps geometrically. Consider the quotient map

µ−1(0)ss −�M(λ, µ)

Since the GV action on µ−1(0)ss is free, there is a canonical isomorphism

H∗GV (µ−1(0)ss) ∼= H∗(M(λ, µ)
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Consider the (GV –equivariant) embedding ι : µ−1(0)ss ↪−→M(λ, µ). The latter space is contractible, so

overall there is an induced map

H∗GV (pt) ∼= H∗GV
(
M(λ, µ)

) ι∗−→ H∗GV (µ−1(0)ss) ∼= H∗
(
M(λ, µ)

)
Tracing Chern classes we get cr(Vi) 7→ cr(Vi), yielding the map ψ. By taking into account the GW ×C×

action, we get the definition of Ψ.

Theorem 8.2.2 ([Web15, Corollary 3.7]). The Kirwan map ψ is surjective.

For general Nakajima quiver varieties outside of finite type ADE, it is not known whether this theorem

holds.

Corollary 8.2.3. The equivariant Kirwan map Ψ is surjective.

The author thanks Ben Webster for suggesting the following argument:

Proof. Since M(λ, µ) is equivariantly formal for the action of GW × C×,

H∗
(
M(λ, µ)

) ∼= H∗GW×C×
(
M(λ, µ)

)/
H∗GW×C×(pt)+H

∗
GW×C×

(
M(λ, µ)

)
where H∗GW×C×(pt)+ is the ideal generated by all elements of positive degree. Moreover Ψ specializes

to ψ under this isomorphism, and the image X of Ψ lifts the image of ψ. If ψ is surjective, then Ψ is

surjective by Lemma 8.2.4 (b).

We list two variations on the graded Nakayama Lemma, one of which was used above and another

which we use later:

Lemma 8.2.4. Let R =
⊕

n≥0Rn be a graded ring, and R+ =
⊕

n>0Rn. Let M =
⊕

n∈ZMn be a

graded R–module such Mn = 0 for n << 0.

(a) If R+M = M , then M = 0.

(b) Let X ⊂M be a subset. Then X generates M if and only if the image of X generates M/R+M .

8.2.4 Chern characters of the bundles Vγ
For each γ ∈ W$i, we constructed a vector bundle Vγ on M(λ, µ) (Definition 7.2.11). As in §7.2.5 we

denote by qγ ∈ B($i, 0) the unique element of weight γ, and write

qγ = yi,0z
−1
U =

∏
j,k

y
bj,k
j,k ∈ B($i, 0)

In Theorem 7.2.15 we gave an explicit expression for the class [Vγ ] ∈ KGW×C×
0

(
M(λ, µ)

)
.

By the Whitney sum formula, the Chern series (8.1) defines a homomorphism

KGW×C×
0

(
M(λ, µ)

)
−→ 1 + u−1H∗G(X)[[u−1]],

where we think of the left-hand side as an additive group, and the right-hand side as a multiplicative

group.

The effect of tensoring a vector bundle by q can be accounted for in its Chern series:
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Lemma 8.2.5. For any equivariant vector bundle E on M(λ, µ) and any k ∈ Z, we have

CqkE(u) = (1 + 1
2k~u

−1)rk ECE(u+ 1
2k~)

Proof. This follows from an application the splitting principle.

The following result is now immediate from Theorem 7.2.15:

Corollary 8.2.6. For γ ∈W$i and qγ ∈ B($i, 0) as above, we have

CVγ (u) =
∏
j,k

(
(1 + 1

2k~u
−1)λiCWj

(u+ 1
2k~)

)Uj(k−2)∏
j,k

(
(1 + 1

2k~u
−1)mjCVj (u+ 1

2k~t)
)bj,k

8.3 The algebras Bλ
µ and H∗GW×C×

(
M(λ, µ)

)
We have now expressed both of these algebras as quotients of

Pλµ = C[~, R(s)
i , A

(r)
i : i ∈ I, 1 ≤ s ≤ λi, 1 ≤ r ≤ mi]

On the one hand, in §5.4 we defined Bλµ as a quotient of Pλµ by the ideal generated by all coefficients

of the series Hq(u), for all i ∈ I and each element q ∈ B($i, 0) corresponding to an extremal weight

γ ∈W$i. Hq(u) was defined in (5.9).

On the other hand, we have the surjective Kirwan map Pλµ −� H∗GV ×GW×C×(pt) as described in

§8.2.3. To produce elements in its kernel, we consider the rank relations (8.2) corresponding to the vector

bundle Vγ :

urkVγCVγ (u) = 0

We can now prove the main result of this section:

Theorem 8.3.1. Under the surjection Pλµ −� H∗GW×C×
(
M(λ, µ)

)
, we have

Hq(u) 7−→ urkVγCVγ (u)

for every pair q and γ corresponding as above. In particular, this surjection factors through Bλµ:

Pλµ

Bλµ H∗GW×C×
(
M(λ, µ)

) (8.4)

Proof. Comparing the expression (5.9) for Hq(u) with the expression for CVγ (u) from Corollary 8.2.6, it

is easy to see that these two series are equal up to multiplication by some rational function C(u, ~); we

simply need to determine this factor.
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For any j, k we have

Rj(u+ 1
2k~) = (u+ 1

2k~)λj +R
(1)
j (u+ 1

2k~)λj−1 + . . .+R
(λj)
i

= (u+ 1
2k~)λj

(
1 +R

(1)
j (u+ 1

2k~)−1 + . . .+R
(λj)
j (u+ 1

2k~)−λi
)

7−→ (u+ 1
2k~)λjCWj

(u+ 1
2k~)

= uλj (1 + 1
2k~u

−1)λjCWj (u+ 1
2k~)

and also,

(u+ 1
2k~)mjAj(u+ 1

2k~) 7−→ umj (1 + 1
2k~u

−1)mjCVj (u+ 1
2k~t)

Therefore,

Hγ(u) 7−→ uNCVγ (u)

where N =
∑
j,k Uj(k − 2)λj +

∑
j,k bj,kmj . By Theorem 7.2.15, N is precisely the virtual rank of Vγ ,

and therefore N = rkVγ .

Conjecture 8.3.2. The map from the previous theorem defines an isomorphism of Pλµ–algebras:

Bλµ
∼= H∗GW×C×

(
M(λ, µ)

)
,

which is a degree doubling map.

8.3.1 Compatibilty with coproducts

Fix elements λ = λ′ + λ′′ from P+, and elements µ = µ′ + µ′′ from P , satisfying λ ≥ µ, λ′ ≥ µ′ and

λ′′ ≥ µ′′.
Recall that in §5.4.2, we defined a homomorphism

∆λ′,λ′′

µ′,µ′′ : Bλµ −→ Bλ
′

µ′ ⊗C[~] B
λ′′

µ′′

Ri(u) 7−→ R′i(u)⊗R′′i (u), Ai(u) 7−→ A′i(u)⊗A′′i (u), ~ 7−→ ~⊗ 1

In §7.1.7, following Nakajima, we described an inclusion

ιλ
′,λ′′

µ′,µ′′ :M(λ′, µ′)×M(λ′′, µ′′) ↪−→M(λ, µ)

There is an induced map in GW ′ ×GW ′′ × C×–equivariant cohomology,

H∗GW ′×GW ′′×C×
(
M(λ, µ)

)
−→ H∗GW ′×GW ′′×C×

(
M(λ′, µ′)×M(λ′′, µ′′)

)
Using the equivariant Künneth isomorphism, the right-hand side is isomorphic to

H∗GW ′×C×
(
M(λ′, µ′)

)
⊗H∗

C×
(pt) H

∗
GW ′′×C×

(
M(λ′′, µ′′)

)
We will refer to the composition of these two maps as a coproduct.

Proposition 8.3.3. All of the maps from Theorem 8.3.1 intertwine coproducts.
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Proof. Since we are looking at surjections, it suffices to check the claim for the maps out of Pλµ . By

definition, the map Pλµ −→ Bλµ respects coproducts.

For the quiver variety case, consider the Kirwan map Pλµ −→ H∗GW×C×
(
M(λ, µ)

)
. The image of Ai(u)

is the Chern series CVi(u). From Lemma 7.1.13, Vi pulls back to V ′i � V ′′i on M(λ′, µ′) ×M(λ′′, µ′′).

Under the Künneth isomorphism, the Chern series of this pullback is therefore the tensor product of the

Chern series for V ′i and V ′′i . This is precisely the image of A′i(u) ⊗ A′′i (u) under the product of Kirwan

maps, proving the claim in this case.

8.3.2 Specialization of parameters

Let us now consider a set of parameters R. This determines a C×–action on M(λ, µ) as in §7.3.1, via

the homomorphism

ρ : C× −→ GW × C×, t 7−→ (ρi(t)
−1, t)

On the level of cohomology, there is an associated restriction homomorphism

H∗GW×C×
(
M(λ, µ)

)
⊗H∗

GW×C×
(pt) H

∗
C×(pt) ∼= H∗C×

(
M(λ, µ)

)
where on the right-hand side C× acts on M(λ, µ) by ρ. Since M(λ, µ) is equivariantly formal, there is

an injection corresponding to the inclusion the fixed point locus:

H∗C×
(
M(λ, µ)

)
↪−→ H∗C×

(
M(λ, µ,R)

)
We make a further specialization, and set ~ = 1. Now, recall from §7.3.2 that the connected compo-

nents of the fixed point set M(λ, µ,R) are labelled by monomials p = yRz
−1
S ∈ B(λ,R)µ. Consider a

component X(S), and choose a point x ∈ X(S). The inclusions

pt = {x} ↪−→ X(S) ↪−→M(λ, µ,R)

induce maps

H∗
(
M(λ, µ,R)

)
−→ H∗

(
X(S)

)
−→ C

As noted in the proof of [KTW+15, Proposition 8.11], these correspond precisely to the maximal ideals

of H∗
(
M(λ, µ,R)

)
: for an algebraic variety Y , the homomorphisms H∗(Y )→ C are given by H∗(Y )→

H∗(Yi)→ C, where Yi ranges over the connected components of Y .

On the other hand, we can specialize Bλµ at the point R× {1} ∈ SpecC[R
(s)
i , ~] and get the algebra

Bλµ(R). Any yRz
−1
S ∈ B(λ,R)µ defines a point S ∈ MaxSpec B̃λµ(R) by Theorem 6.2.10, so in particular

point in MaxSpecBλµ(R) via

Bλµ(R) −� B̃λµ(R) −→ C

Proposition 8.3.4 ([KTW+15, Lemma 8.12]). For any S such that yRz
−1
S ∈ B(λ,R)µ, the above spe-

cializations are compatible, in the sense that the following diagram commutes:

Bλµ Bλµ(R) C

H∗GW×C×
(
M(λ, µ)

)
H∗
(
M(λ, µ,R)

)
C
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8.3.3 The conjectures of Hikita and Nakajima

In [KTW+15], we proved Hikita’s conjecture for the slices Grλµ and their (expected) symplectic duals

M(λ, µ). The proof of this result uses very different techniques compared to the those in this thesis:

relationships between Demazure and Weyl modules, the cohomology of M(λ, µ), and sections of the

determinant line bundle O(1) over Grλµ.

Theorem 8.3.5 ([KTW+15, Theorem 8.1]). For λ ≥ µ ∈ P+, there is an isomorphism of graded

H∗GW (pt)–algebras

B
(
O(Grλµ)

) ∼= H∗
(
M(λ, µ)

)
In §5.2 we gave a presentation bλµ for the B–algebra of O(Gλµ) (see Definition 5.2.6), and proposed in

Conjecture 5.2.7 that bλµ
∼= B

(
O(Grλµ)

)
.

Proposition 8.3.6. Suppose that Conjecture 5.2.7 holds for all λ ≥ µ ∈ P+. Then there is an isomor-

phism of graded H∗GW (pt)–algebras

bλµ
∼−→ H∗

(
M(λ, µ)

)
, A

(r)
i 7−→ cr(Vi)

for all λ ∈ P+ and µ ∈ P with λ ≥ µ.

Proof. The above map is precisely the specialization of Theorem 8.3.1 at the ideal H∗GW×C×(pt)+: by

Proposition 5.4.8 bλµ is the specialization of Bλµ , and H∗
(
M(λ, µ)

)
is a specialization as follows from

equivariant formality. So bλµ → H∗
(
M(λ, µ)

)
is a surjection. When µ ∈ P+ is dominant, this agrees

with the isomorphism from Theorem 8.3.5, as all maps are of quotients of H∗GV (pt). Hence our claim

holds in this case.

When µ is not dominant, we recall that there is an isomorphism bλµ
∼= bλµ̃ from Lemma 5.2.8, where

µ̃ is the dominant Weyl translate of µ. In particular, dim bλµ = dim bλµ̃. On the other hand, it is known

that

dimH∗
(
M(λ, µ)

)
= dimH∗

(
M(λ, µ̃)

)
For example, this follows because the direct sum over µ of these rings is a finite-dimensional represen-

tation for g [Nak98]. Now Theorem 8.3.5 applies, implying that dim bλµ̃ = dimH∗
(
M(λ, µ̃)

)
. Finally,

we see that bλµ � H∗
(
M(λ, µ)

)
is a surjection between vector spaces of the same dimension, so is an

isomorphism.

Using this result, we now show that Conjecture 5.2.7 is strong enough to imply Nakajima’s conjecture:

Theorem 8.3.7. Let λ ∈ P+. If Conjecture 5.2.7 holds for all λ ≥ µ ∈ P+, then Conjecture 8.3.2 holds

for all µ ∈ P with λ ≥ µ: there is an isomorphism of graded Pλµ–algebras

Bλµ
∼−→ H∗GW×C×

(
M(λ, µ)

)
In particular, this holds in type A.

Proof. The surjection Bλµ −� H∗GW×C×
(
M(λ, µ)

)
is of graded H∗GW×C×(pt)–modules. Let K denote its

kernel, so there is an exact sequence of graded modules

0 −→ K −→ Bλµ −→ H∗GW×C×
(
M(λ, µ)

)
−→ 0
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Base changing to the quotient C ∼= H∗GW×C×(pt)/H∗GW×C×(pt)+, we get the exact sequence

0 −→ K ⊗H∗
GW×C×

(pt) C −→ bλµ −→ H∗
(
M(λ, µ)

)
−→ 0

Indeed, by equivariant formality, H∗GW×C×
(
M(λ, µ)

)
is free over H∗GW×C×(pt) so

Tor
H∗
GW×C× (pt)

1

(
H∗GW×C×

(
M(λ, µ)

)
,C
)

= 0

By the previous proposition, if Conjecture 5.2.7 holds then bλµ → H∗
(
M(λ, µ)

)
is an isomorphism.

Therefore K ⊗H∗
GW×C×

(pt) C = 0. By the graded Nakayama Lemma 8.2.4 (a), this implies that K = 0.

8.4 The case of sl2

Recall from §7.4 that for sl2, there is an isomorphism

M(λ, µ) ∼= T ∗Gr(m,λ)

In this case,

Pλµ = C[~, A(1), . . . , A(m), R(1), . . . , R(λ)]

and the B–algebra is a quotient by relations as in §5.5. By Theorem 8.3.7, we get a presentation for

H∗GL(λ)×C×
(
T ∗Gr(m,λ)

)
In terms of Chern classes: there is an equivariant exact sequence

0 −→ V −→ q2W −→ q2Vs$ −→ 0

and the relations are that

cr(V) = 0, for r > rkV, cr(Vs$) = 0, for r > rkVs$

This agrees with a classical presentation for this cohomology ring.



Bibliography

[AMR06] D. Arnaudon, A. Molev, and E. Ragoucy, On the R-matrix realization of Yangians and

their representations, Annales Henri Poincaré 7 (2006), 1269–1325.
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